
CSCI3390-First Test, with solutions

October 11, 2018

Note that the only problems in which you deal with the low-level details of a
Turing machine are 1(a,b,c). Problems where you have to describe the operation
of a TM (1(e) and 3) should be handled using a high-level description. Problems
2(c,d) are probably more difficult than the others. As with all tests, I suggest
you read over all the problems at the outset, and first work the ones that you are
reasonably sure you know how to do.

Point values: 1-25, 2-25, 3-15, 4-20. Total: 85

1 A Turing Machine
The first figure attached to the exam shows the state-transition diagram of a Turing
machineM. The input alphabet ofM is {0, 1}.

(a) What is the tape alphabet ofM?

Solution.

{0, 1, X,#,�}.

(b) Let δ denote the transition function

δ : (Q− {halt})× Γ→ Q× Γ× {L,R}

ofM. What is δ(2, 0)? What is δ(2,#)?

Solution.
δ(2, 0) = (3, X,R), δ(2,#) = (4,�, L).
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(c) What are the two configurations immediately following

1X3#

(where the boldface number represents a state)?

Solution.
1X#3�

1X1#0

(You can see something very much like this in the transitions from steps 12 to
14 in the printed run.)

(d) Attached to the exam is a complete run of the machine on the input 010. You
should be able to see from this that the machine takes an input w ∈ {0, 1}∗
and produces the output 0k, where k is the number of occurrences of 0 in w.
You should also be able to see how the machine carries out this computation.
About how many steps does this computation require in the worst case on
inputs of length n? I am not looking for an exact formula here, just a precise
asymptotic estimate.

Solution. The machine marks a # at the right end of the input, and returns
to the left end. Then it repeatedly scans right, crossing off the leftmost occur-
rence of 0 before the #, continues right to the right end of the tape, and writes
a 0. It continues until there are no more 0’s to the left of the #, then does one
last pass, erasing the # and everything to its left.

So the total number of passes over the whole tape is 2k + 3, where k is the
number of 0’s. The three additional passes are for the setup at the beginning
and the cleanup at the end. The tape always contains between n and 2n sym-
bols. We get the worst-case behavior when the input is entirely 0’s, so that
k = n. (Ironically, because in this case the desired output is present on the
tape from the start!) The number S of steps is thus bounded below and above
by

2n2 + 3n ≤ S(n) ≤ 4n2 + 6n.

So the answer is O(n2), actually Θ(n2) in the worst case. (You didn’t have to
go quite this much detail, but you had to write something by way of explana-
tion.)
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(e) Describe a two-tape Turing machine that performs the same computation in
time proportional to the length of the input in all cases. The machine should
begin with the input on the first tape and end with the output also on the
first tape—it doesn’t matter what’s left on the second tape. This should be
a ‘high-level’ description—you don’t have to write out details of states and
transitions.

Solution. The machine makes a single pass to the right on both tapes, copying
every 0 on the first tape to the second, and erasing every symbol from the first
tape. It makes a pass to the left, copying the 0’s on the second tape to the first
tape. For inputs of length n, this takes about 2n steps.

2 Decision problems about graphs
Below is a list of decision problems in which part of the input is a directed graph.
If the graph is finite, then we simply represent the vertices of the graph by the
integers 1, . . . , n and encode the graph by giving a list of the pairs (i, j) for which
there is an arrow from i to j.

If the graph is infinite, then we cannot specify it in this way. Instead, we
will represent the vertices by positive integers, and supply as part of the input
an algorithm (e.g., a Turing machine or a Python program) that decides, given
positive integer inputs i, j, whether there is an arrow from i to j. (For instance,
in the infinite directed graph pictured on the last page, the algorithm is: Yes if
j = i+ 2, or j = i− 1 and j is odd, or j = i− 3 and j is even; no otherwise.)

For each of the problems listed below, tell whether the problem is Turing-
recognizable, or decidable, or neither. Briefly justify your answer. You can cite
any theorem discussed in class as part of the justification.

(a) Input: A finite graph G, and two vertices i and j. Output: Yes, if there is a
directed path in G from i to j, no otherwise.

Solution. If a path exists, its length is less than or equal to the number n of
vertices in the graph. So we can just list all sequences of n vertices, beginning
with i and ending with j, and checking if any of them is a path. Thus this
problem is decidable.

(b) Input: An infinite graph, and a finite sequence

i1, i2, . . . , ik
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of positive integers. Output: Yes if this sequence forms a directed path in G
from i1 to ik, no otherwise.

Solution. For each successive pair ir, ir+1 of vertices in the sequence, we
query the supplied algorithm to find out if this is an arrow in the graph. If
every such pair is an arrow, then the sequence is a path.

(c) Input: An infinite graph G, and two vertices i and j. Output: Yes if there is
a directed path in G from i to j, no otherwise. Explain why this problem is
Turing-recognizable. (HINT: The preceding problem might help.)

Solution. We can effectively enumerate all finite sequences of vertices, by
first listing all the sequences that sum to 2, to 3, etc. that is,

1, 1

1, 1, 1

1, 2

2, 1

For each of these we can check, using the algorithm from the previous part,
whether the sequence is a path, and of course we can check whether the first
term of the sequence is i and the last j. Thus, if there is a path from i to j, this
algorithm will find one and answer ’Yes’. Note that it never answers ’No’, but
runs forever if no path exists. Thus this problem is Turing-recognizable.

(d) Input: ...and explain why it is undecidable.

Solution. In brief, if we could do this, we could decide the halting problem:
Let us take a Turing machineM and an input string w. We can encode every
possible configuration of the Turing machine as a positive integer. We then
construct a graph where the vertices are configurations, and where there is an
arrow from c to c′ if and only if configuration c′ immediately follows config-
uration c. Although this graph is infinite, we certainly have an algorithm for
determining if one configuration ofM immediately follows another. We can
also add one more vertex, call it vertex 1 (we have to design our encoding
so that no configuration ofM has this value), and add an arrow from every
configuration in the halted state to 1. The halting problem is not determining
if there is a path in the graph from the initial configuration to vertex 1. (You
could also describe a reduction from the string-rewriting problem, which we
showed in class is undecidable).

4



3 A reduction...
Let M be a Turing machine with input alphabet {0, 1}, and let w ∈ {0, 1}∗.
Describe how to construct a Turing machine N with the following behavior: If
M halts when started on w, then N accepts every string over {0, 1}. IfM does
not halt when started on w, thenN accepts the empty string ε and no other string.

Solution. Construct N so that it first checks if its input is empty (that is, if its
head is positioned over a blank symbol), and accepts immediately if that is so. If
the input is not empty, N erases its input, writes w on its tape, and then proceeds
to act like M. If it ever enters the halt state of M, then N accepts. This just
entails fixing up the description ofM so that there is an initial phase of checking,
erasing, and writing w, and adjusting so that the generic halt state is replaced by
the accept state.

4 ...and its consequences
Consider the following four problems:

HALT1 = {<M, w >:M halts when started on w}

FINITE = {<M >: The set of strings accepted byM is finite}.

INFINITE = {<M >: The set of strings accepted byM is infinite}.

ALL = {<M >:M accepts every string over {0, 1}}.

(a) The construction described in the preceding problem is a mapping reduction
from one or more of the problems above to another one or more of the prob-
lems above. Which problems are these? Give all that apply.

(b) As a result we are able to conclude, using results we proved in class, that one
or more of the problems above is undecidable. Which problem or problems
are these? (Explain a bit of the reasoning as well.)
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Solution. The construction has the following properties:

• M halts on w if and only if N accepts an infinite set of strings.

• M halts on w if and only if N accepts every string over {0, 1}.

Thus this construction is a mapping reduction from HALT1 to INFINITE and
also from HALT1 to ALL. Since HALT1 was known to be undecidable, these
two problems are as well.

It also shows thatFINITE is undecidable, because if we could decideFINITE
then we could decide INFINITE. (In this sense, you could also say that the
construction reduces HALT1 to FINITE, but it is not a mapping reduction.)
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Figure 1: The state graph for the Turing machine in Problem 1
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1 .state: 0 
010 
^   
2 . 
state: 0 
010 
 ^  
3 . 
state: 0 
010 
  ^ 
4 . 
state: 0 
010B 
   ^ 
5 . 
state: 1 
010# 
  ^  
6 . 
state: 1 
010# 
 ^   
7 . 
state: 1 
010# 
^    
8 . 
state: 1 
B010# 
^     
9 . 
state: 2 
010# 
^    
10 . 
state: 3 
X10# 
 ^   
11 . 
state: 3 
X10# 
  ^  
12 . 
state: 3 
X10# 
   ^ 
13 . 
state: 3 
X10#B 
    ^ 
14 . 
state: 1 
X10#0 
   ^  
15 . 
state: 1 
X10#0 
  ^   
 

16 . 
state: 1 
X10#0 
 ^    
17 . 
state: 1 
X10#0 
^     
18 . 
state: 1 
BX10#0 
^      
19 . 
state: 2 
X10#0 
^     
20 . 
state: 2 
X10#0 
 ^    
21 . 
state: 2 
X10#0 
  ^   
22 . 
state: 3 
X1X#0 
   ^  
23 . 
state: 3 
X1X#0 
    ^ 
24 . 
state: 3 
X1X#0B 
     ^ 
25 . 
state: 1 
X1X#00 
    ^  
26 . 
state: 1 
X1X#00 
   ^   
27 . 
state: 1 
X1X#00 
  ^    
28 . 
state: 1 
X1X#00 
 ^     
29 . 
state: 1 
X1X#00 
^      
 
 
 
 

30 . 
state: 1 
BX1X#00 
^       
31 . 
state: 2 
X1X#00 
^      
32 . 
state: 2 
X1X#00 
 ^     
33 . 
state: 2 
X1X#00 
  ^    
34 . 
state: 2 
X1X#00 
   ^   
35 . 
state: 4 
X1XB00 
  ^    
36 . 
state: 4 
X1BB00 
 ^     
37 . 
state: 4 
XBBB00 
^      
38 . 
state: 4 
BBBBB00 
^       
39 . 
state: -3 
BBBB00 
^      
halt 
39 steps 
    00 

Figure 2: Run of the Turing machine from Problem 1 on the input string 010.
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Figure 3: An example of an infinite graph. The graph is ‘given’ as input as long as
we specify an algorithm for determining when there is an arrow from one vertex
to another. Here the algorithm should be obvious!
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