
Lecture 7: Expected value of a random
variable

February 14, 2019

1 An example
Imagine a fair 4-faced die, with faces labeled 1,2,3,4. We roll two such dice. Let
X be the value that appears on the first die, Y the value that appears on the second
die, and Z = max(X, Y ). You should be able to verify

PZ(1) =
1

16
, PZ(2) =

3

16
, PZ(3) =

5

16
, PZ(4) =

7

16
.

Suppose we perform this experiment many times (say N times) over. We would
expect that 1 would be the maximum value in approximately N/16 trials, 2 the
maximum value in 3N/16 trials, etc. So the average maximum value over all
these trials should be

1

N
· (1 · N

16
+ 2 · 3N

16
+ 3 · 5N

16
+ 4 · 7N

16
) =

1 + 6 + 15 + 28

16

=
50

16

= 3.125.

2 Definition.
We can perform the same calculation with any random variable. E(X) denotes
the expected value. or expectation, or mean of the random variable X. It really is
just what we might expect as the average value of X if we perform the underlying

1



experiment many times. The definition is just the weighted average of the values
of X, where the weights are the probabilities:

E(X) =
∑
a

a · PX(a).

What’s the index set of the sum? We could say that we sum over all real numbers
a—ordinarily this does not make sense, except in this case it does, because PX(a)
is zero at all but a finite or discrete infinite set of values.

An alternative equivalent definition: If we view theX as a real-valued function
defined on a sample space S, then PX(a) is the sum of P (s) over all s for which
X(s) = a. As a result,

E(X) =
∑
s∈S

X(s) · P (s).

There’s a lot of fine print below in the derivation of expected values for stan-
dard distributions–read if you’re interested, but feel free to skip.

3 Simple examples.

3.1 Bernoulli random variable with parameter p.
The definition gives

E(X) = 0 · PX(0) + 1 · PX(1) = PX(1) = p.

Which only makes sense: if you flip the biased coin, with head probability p,
a bunch of times, the proportion of tosses that yield heads should be p.

3.2 A single die (fair, 6-sided).
Here PX(i) = 1

6
for i = 1, . . . , 6. So

E(X) =
6∑
i=1

i · 1
6
=

1

6

6∑
i=1

i =
1

6
· 21 = 3.5.

All uniform distributions work this way: the expected value is just the ordinary
mean of all the values of X.
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3.3 Sum of two dice.
If you look at the graph of the PMF of the sum of two such dice, you can kind of
just see from the symmetry that the answer is 7. More precisely, for any i between
0 and 5, P (X = 7−i) = P (X = 7+i). In other words, 2 has the same probability
as 12, 3 the same probability as 11, etc. So

E(X) =
12∑
2

i · P (X = i)

= 7 · P (X = 7) +
5∑
i=1

((7− i) + (7− i)) · P (X = 7− i)

= 7 ·
[
P (X = 7) +

5∑
i=1

2 · P (X = 7− i)
]

= 7 ·
[
P (X = 7) +

5∑
i=1

(P (X = 7− i) + P (X = 7 + i))
]

= 7 ·
12∑
i=2

P (X = i)

= 7 · 1
= 7.

(This was an effort to explain why the symmetry in the graph makes the value 7,
without having to use any calculated values for the probability.) We’ll see in a
moment how to get this answer even more simply.

4 Linearity of Expectation
If X, Y are random variables defined on the same sample space S, then applying
the second formula that we gave for the expected value gives
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E(X + Y ) =
∑
s∈S

P (s) · (X + Y )(s)

=
∑
s∈S

P (s) · (X(s) + Y (s))

=
∑
s∈S

(P (s) ·X(s) + P (s) · Y (s))

=
∑
s∈S

P (s) ·X(s) +
∑
s∈S

P (s) · Y (s)

= E(X) + E(Y ).

Observe that this does not require any additional assumptions on X and Y (in
particular, it doesn’t matter if they are independent or not). In a like manner, if
X1, . . . , Xn are all defined on S then

E(X1 + · · ·+Xn) = E(X1) + · · ·+ E(Xn),

and if c ∈ R is constant, then

E(cX) = c · E(X).

This lets us redo our example with the pair of dice, using the earlier result for a
single die: IfX denotes the sum of the values on the two dice, thenX = X1+X2,
where Xi denotes the value of the ith die. Thus

E(X) = E(X1 +X2) = E(X1) + E(X2) = 3.5 + 3.5 = 7.

5 Binomial Random Variable
As we saw, a binomial random variable X with parameters n, p is the sum of n
Bernoulli random variables each with parameter p, so by our sum formula,

E(X) = p+ · · ·+ p = np.

If you tried to get this directly from the definition of expected value, you’d have
to prove

n∑
k=0

k ·
(
n

k

)
pk(1− p)n−k = np.
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In fact, we just proved it! using our formula for the expected value of a sum, and
the expected value of a Bernoulli random variable. It’s not all that hard to prove
this identity directly, but what we just did makes it so much easier.

Observe that this is the obvious answer: If you toss a biased coin n times,
you’d expect, on average, to get np heads, where p is the probability of heads.
(The theme of much of this lecture could be ‘The expected value is what you
expect it is.’)

6 Geometric Random Variable
Again, there is a sort of obvious guess: If the probability of heads is, say, 1

3
, then

the number of tosses until you get heads seems like it ought to be 3 on the average.
In general, if X is a random variable with geometric distribution with parameter
p, then the guess is E(X) = 1

p
. This is correct.

The textbook demonstrates this in two different ways, here is still another way. This is not the most rigorous argument,
because it plays fast and loose extending the linearity for random variables to infinite sums, which would require some
formal justification:

Let X be a geometrically distributed random variable with parameter p. For each i > 0, let Xi be the random
variable that has the value 1 if the first i − 1 tosses are tails. So, for example, Xi = 0 if the game terminates in i − 1 or
fewer tosses. Then

X = X1 +X2 + · · · .

Each Xi is a Bernoulli random variable with parameter (1 − p)i−1, and thus E(Xi) = (1 − p)i−1. By linearity of
expectation:

E(X) =

∞∑
i=0

E(Xi)

=
∞∑
i=0

(1− p)i−1

=
1

1− (1− p)

=
1

p
.

7 Hypergeometric Distribution
Recall that the underlying problem is choosing n balls from a bin that contains
K red balls and N white balls. The random variable is the number of red balls
selected. If N and K are very much larger than n, then this sampling-without-
replacement problem starts to look like sampling-with-replacement, where the
distribution is binomial with parameters n and p = K

N
. This suggests that at least
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for large N we should have E(X) approximately n · p = nK/N, and in fact that
is the exact answer, correct for all values of K,N, n.

Here is a somewhat informal proof of this fact by induction onN. IfN = 1 then we haveE(X) = 0 or 1, depending
on whether the one ball is red or white. Now suppose that the formula is correct for N − 1, where N > 1. We will use
the notation XN,K,n to denote a hypergeometric random variable with parameters N,K, n. Now think of the underlying
experiment as consisting of first, a draw of a single ball, followed by a draw of the remaining n − 1 balls. K/N of the
time, the first ball will be red. Since the second phase of the experiment consists of drawing n − 1 balls from a bin with
N − 1 balls, K − 1 of which are red, for these instances the average number of red balls will be

1 + E(XN−1,K−1,n−1).

The alternative is that we draw a white ball first, and in the second phase we draw n− 1 balls from a bin with N − 1 balls
and K red balls. We put these two results together and apply the inductive hypothesis:

E(XN,K,n) =
K

N
· (1 + E(XN−1,K−1,n−1)) + (1−

K

N
) · E(XN−1,K,n−1)

=
K

N
·
(
1 + (n− 1) ·

K − 1

N − 1

)
+ (1−

K

N
) · (n− 1) ·

K

N − 1
.

After a good deal of disagreeable algebra–but no clever tricks!–this all collapses to nK/N, as required.

8 Poisson Distribution
Remember that the Poisson distribution with λ = np is a good approximation
to the binomial distribution with small p and large n, at least for small values of
the random variable X. So we might guess that the Poisson distribution has the
same expected value as the binomial distribution, namely np = λ. Once again,
the guess is correct.

The fine print: By definition,

E(X) =

∞∑
k=0

k ·
λk

k!
e−λ

=

∞∑
k=1

λk

(k − 1)!
· e−λ

= λ ·
∞∑
k=1

λk−1

(k − 1)!
· e−λ

= λ ·
∞∑
k=0

·
λk

k!
e−λ

= λ · 1
= 1.
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9 Function of a random variable
It is not true in general thatE(X2) = E(X)2, orE(|X|) = |E(X)|, orE(max(X, Y )) =
max(E(X), E(Y )). If we have a random variable X and define a new random
variable Y = f(X), then there is no simple formula giving E(f(X)) in terms of
E(X). Instead, we have:

E(Y ) =
∑
a

f(a) · PX(a).

As an illustration, let’s return to our example at the beginning of the lecture, with
the two four-sided dice.

Z = max(X, Y )

=
X + Y + |X − Y |

2
.

X − Y takes on the values ±3 each with probability 1
16
, ±2 each with probability

2
16
, ±1 each with probability 3

16
and 0 with probability 1

4
. It follows from this and

the above that

E(|X − Y |) =
3∑

j=−3

|j| · PX−Y (j)

= 2 · (3 · 1
16

+ 2 · 2
16

+ 1 · 3
16

)

=
6 + 8 + 6

16
= 1.25.

From linearity of expectation we get

E(Z) =
1

2
· (E(|X − Y |) + E(X) + E(Y )) =

1

2
(1.25 + 2.5 + 2.5) = 3.125,

which is what we found earlier.

10 St. Petersburg Paradox—not every random vari-
able has an expected value

Imagine we play the coin-tossing game where we toss repeatedly until the coin
shows heads, however in this version we get paid as a function of how long the

7



game lasts. If the game ends on the first toss, we win nothing, but if ends on the
second toss we win 1 dollar, on the third toss 2 dollars, on the fourth toss 4 dollars,
and in general, if the game lasts exactly i tosses, where i > 1,we win 2i−2 dollars.
Let Y denote the amount we win. Then E(Y ) is given by the infinite series

1 · 1
4
+ 2 · 1

8
+ 4 · 1

16
+ · · · = 1

4
+

1

4
+

1

4
+ · · · .

This series has no limit, but grows to infinity as the number of summands increases
Thus E(Y ) is not defined.

What does this mean if you actually play this game? It cannot mean, ‘on
average, I will win an infinite amount of money’. What will happen if you play
this game repeatedly?
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