
Lecture 5: Discrete Random Variables

February 11, 2019

1 Examples of random variables.
Roughly speaking, a random variable X assigns a number to the outcome of an
experiment. Here we’ll give a bunch of examples to give you the idea; later we’ll
give a precise definition.

1.1 Single coin toss
Toss a single coin, and set X0 = 1 if the coin comes up heads, and X0 = 0 if the
coin comes up tails.

1.2 Coin tosses
Toss a fair coin 20 times.

1.2.1 Number of heads

Let X1 denote the number of heads tossed.

1.2.2 Excess of heads over tails.

Let X2 denote the number of heads minus the number of tails.

1.2.3 Length of longest run

Let X3 denote the length of the longest run of consecutive heads or tails.
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1.3 Wait until heads.
Toss a coin repeatedly until heads comes up. Let X4 denote the number of tosses.

1.4 Dice
1.4.1 One die

Roll a six-faced die. Let Y1 denote the number showing.

1.4.2 Two dice

Roll two six-sided dice, and let Y2,1 denote the number showing on the first die,
and Y2,2 the number showing on the second die. Set

Y2 = Y2,1 + Y2,2,

that is, Y2 denotes the sum of the two dice.

1.5 Darts
Throw 1000 darts at a darboard 12 inches in diameter, with a bulls-eye that is 1
inch in diameter. Let Z1 denote the number of darts that strike the board. Let Z2

denote the distance from the center of the board to the closest dart.
The various X’s, Y ’s and Z’s above are random variables.

2 Events and probabilities; PMF of a random vari-
able.

If X is a random variable and a ∈ R, then we write X = a for the event consisting
of all outcomes for which X has the value a. We write P (X = a) to denote the
probability of this event. Similarly, we write things like X < a, P (a < X ≤ b),
etc. We illustrate this with the random variables in the examples above.

We have
P (X0 = 1) = P (X0 = 0) =

1

2
,

assuming a fair coin.
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We’ve seen how to calculate things like the probability that in 20 tosses of a
fair coin we get exactly 7 heads, so

P (X1 = 7) =

(
20

7

)
· 2−20.

We can write X2 = 2X1 − 20, so X1 =
1
2
(X2 + 20), and thus

P (X2 = −6) = P (X1 = 7) =

(
20

7

)
2−20,

We don’t know how to calculate exact probabilities for X3,, but simulations
suggest that the longest run in 20 coin tosses is at least 4 more than 70% of the
time, so:

P (X3 < 4) < 0.3.

As we’ve seen, for i = 1, 2, . . . ,

P (X4 = i) = 2−i.

Assuming fair dice, we have

P (Y2,1 = i) =
1

6

for i ∈ {1, . . . , 6}, and

P (Y2 = 6) =
5

36
, P (Y2 = 7) =

1

6
.

For the dartboard experiment, assume that the probability of hitting the bull’s-
eye is 1/100. Then we can view this as flipping a coin with heads probability
p = 0.01 one thousand times. This gives

P (Z1 = i) =

(
1000

i

)
· 0.01i · 0.991000−i.

As we’ll see later, there is an accurate, easy-to-compute approximation for this
probability.

The random variable Z2 is a bit of a problem: In all of the preceding examples,
our random variable X satisfied P (X = i) > 0 on a discrete set of values i, and
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P (Xi) = 0 everywhere else. That’s what makes them discrete random variables.
However, it would seem that Z2 could take on any of a continuous range of values;
it is a continuous random variable, something we will take up later.

The PMF of a random variable X (also the distribution of X) is the function

PX : R→ [0, 1],

defined by
PX(a) = P (X = a).

As we said, the PMF has a nonzero value only on a discrete subset of R, and is
zero elsewhere. This means that it is possible to form the infinite sum of all the
values of the PMF. We have ∑

{a:PX(a)>0}

PX(a) = 1.

It is as though we redefined the underlying sample space of the experiment
to be the set of possible values X could take on—in this case, the PMF of the
random variable is the same as the PMF as we defined it earlier. Often we define
random variables without specifying the underlying experiment, simply by giving
the PMF.
Example. The PMF of the random variable Y2 above (sum of two dice) has PMF
graphed in Figure 1. The PMF of X4 is graphed in Figure 2. The bounding curves
in the figure are there just to show more clearly the shape of PMF, but are not part
of the graph itself.

3 Formal definition; operations on random variables
Here is the formal definition: A random variable on a probability space (S, P ) is
just a function

X : S → R.

Then P (X = a) is just a special shorthand for the probability of the event

{s ∈ S : X(s) = a}.

For example

X1(HHTHHTHHTTHHHTHHTTTH) = 12.

4



5



In practice you hardly ever use this functional notation for random variables.
By thinking of random variables this way, you can make sense of what it

means to add or subtract (or even multiply) two different random variables on the
same sample space, or multiply random variables by constants: In our examples,
we saw X2 = 2X1 − 20 for the coin example, and Y2 = Y2,1 + Y2,2. Note that in
this example, Y2, X2,1 and X2,2 are all defined on the same sample space

{1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}

which is the set of outcomes of the roll of two dice.
It’s a little harder to say what the underlying sample space for the variables Z1

and Z2 is. We can think of it as the set of sequences (p1, . . . , p1000) of 1000 points
in the interior of the dartboard. This is a continuous sample space, although Z1 is
a discrete random variable defined on this space.

4 Independent random variables
Two random variables X1, X2 on the same probability space are independent if
for all a, b ∈ R,

{s ∈ S : X1(s) = a}, {s ∈ S : X2(s) = b}

are independent events. Recall this means that for all a and b,

P ((X1 = a) ∧ (X2 = b)) = P (X1 = a) · P (X2 = b).

This implies that for any sets A and B of values,

{s ∈ S : X1(s) ∈ A}, {s ∈ S : X2(s) ∈ B}

are also independent events.
Independence provides a formal justification for some of the probability calcu-

lations we made earlier. For example, we would naturally assume that the random
variables that we denoted above by Y2,1 and Y2,2, representing the individual out-
comes of each of the two dice, are independent. This then allows us to compute
the PMF of the sum Y2 = Y2,1 + Y2,2. For example, the even Y2 = 8 is the disjoint
union of the events

(Y2,1 = 2) ∧ (Y2,2 = 6)

(Y2,1 = 3) ∧ (Y2,2 = 5)

6



(Y2,1 = 4) ∧ (Y2,2 = 4)

(Y2,1 = 5) ∧ (Y2,2 = 3)

(Y2,1 = 6) ∧ (Y2,2 = 2).

Independence implies that each of these events has probability 1
6
· 1

6
= 1

36
. So

PY2(8) =
5
36
. This is an important general principle: If we know the distributions

of two random variables, and we know that they are independent, then we can
compute the distribution of their sum (and, likewise, their product, or any other
operation performed on them).

Note that Y2 and Y2,2 are not independent–of course they aren’t, because the
sum of the two dice really does depend on what shows up on the second die! But
let’s verify this formally, using the definition. One counterexample suffices for
this:

P (Y2 = 12) =
1

36
.

P (Y2,2 = 5) =
1

6
,

but
P ((Y2 = 12) ∧ (Y2,2 = 5)) = 0 6= 1

36
· 1
6
.

We can extend this to talk about a collection of more than two mutually inde-
pendent random variables: X1, . . . , Xk are mutually independent if for all a1, . . . , ak ∈
R,

P
( k∧
j=1

(Xj = aj)
)
=

k∏
j=1

P (Xj = aj)

5 Cumulative distribution function
The cumulative distribution function (CDF) of a random variable X, denote FX ,
is a function

FX : R→ [0, 1]

defined by
FX(a) = P (X ≤ a).
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For discrete random variables, we can compute this as

FX(a) =
∑
b≤a

PX(b),

since the terms on the right-hand side are all zero except on a discrete set of values.
The figures below show the CDF of the two random variables Y2 and X4 whose
PMFs were plotted above. Note that for discrete random variables, the CDF is a
step function. This will change when we get to continuous random variables. (By
the way, the horizontal line segments on these figures should appear with an open
dot at the right-hand endpoints! For instance, in the first figure, FX(2) = 1/36,
not 0. I just got lazy....)

6 Using the CDF to generate random values accord-
ing to a given distribution.

The CDF of a random variable is always monotone non-decreasing and rises from
0 to 1. As the second example indicates, it does not have to reach 1 (or 0) but must
approach these values as limits as the argument approaches ±∞.

Suppose you want to generate random numbers that are not distributed uni-
formly, but that obey the distribution of some random variable. For example, we
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might want to generate a bunch of numbers in the range 2,...,12 that are distributed
like the sum of two dice. Using the built-in randint function will let us gen-
erate integers in this range, but they will be uniformly distributed: 2 will occur
approximately as often as 7. But we would actually like 2 to occur with frequency
approximately PX(2) = 1

36
, where X is the random variable that represents the

sum of two successive rolls of a single die.
Of course we could do this easily using randint: Call it twice to generate

two random integers uniformly distributed in the range 1,...,6 and add them. But
we will describe a different method, applicable to any random variable, which
essentially involves inverting the cumulative distribution function of the random
variable.

The figure below illustrates the general procedure, using the sum of two dice
as the example.

First generate a random value y uniformly in the interval [0, 1]. (This is ac-
tually a continuous distribution, which we will discuss formally later—but just
think about the output of random.) In the picture, y is about 0.68. The idea is
to find the corresponding x-value–i.e., to solve y = FX(x). Now the CDF FX is
not one-to-one or onto, so this equation has no solution. Instead, we look for the
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smallest value y′ ≥ y that is in the range of the CDF. In this case

FX(7) = P (X ≤ 7) =
21

36
= 0.583, FX(8) = P (X ≤ 8) =

26

36
= 0.722,

so we have y′ = 26
36
, and the procedure returns the value 8.

What is the probability of generating 8 by this process? We would have to
have, as above,

P (X ≤ 7) < y ≤ P (X ≤ 8),

so the probability is P (X ≤ 8)−P (X ≤ 7) = P (X = 8), which is what we want.
Likewise, any value a of the random variable will be generated with probability
P (X = a).

There is an implementation posted on the website. The figure below shows the
results: 20,000 values in the range 2 to 12 were generated using this algorithm,
and their relative frequencies (in red) were plotted next to the exact values of the
probability mass function. As you can see, there is very close agreement.
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