
Lecture 3: Counting, Shared Birthdays

January 29, 2019

Basic counting principles:

•
|E1 ∪ E2| = |E1|+ |E2|

provided E1 ∩ E2 = ∅.

• For sets that are not necessarily disjoint:

|E1 ∪ E2| = |E1|+ |E2| − |E1 ∩ E2| ≤ |E1|+ |E2|

• More generally,

|
n⋃

j=1

Ej| ≤
n∑

j=1

|Ej|

with equality if the Ej are pairwise disjoint (any two have an empty inter-
section).

• |E1 × E2| = |E1||E2|.

• A more general multiplication principle: Sometimes we view a set as the re-
sults of a sequence of r choices, with each different sequence giving rise to a
different element of the set. Say there are k1 possibilities for the first choice,
for each first choice there are k2 possibilities for the second choice, for each
sequence of the first two choices, k3 possibilities for the third choice, etc.
Then there are k1 · · · kr ways to make the choices.

This is what our tree diagrams are: There is a 1-1 correspondence between
the sequences of choices and the leaves of a tree of depth r, where every
node at depth d < r has kd+1 children. (The root node has depth 0, and the
leaves all have depth r.)
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Permutations. How many sequences of k elements of {1, . . . , n} have all k ele-
ments distinct? For example, with n = 5, k = 3, then (4, 5, 1) is such a sequence,
but (1, 5, 1) is not. We have n choices for the first component of the sequence, and
for each such choice, n − 1 choices for the second, etc. (Note that we must have
k ≤ n.) So by the above principle, the number of such sequences is

n · (n− 1) · · · (n− k + 1) =
n!

(n− k)!
.

This is the number of k-permutations of an n-element set.
If n = k, then (n − k)! = 0! = 1, so the number of n-permutations of

{1, . . . , n} is n!. In this case, we just call them permutations of {1, . . . , n}. If
n < k, then the formula does not make sense; clearly in this case there are no
k-permutations of {1, . . . , n}.

Example. As we saw earlier, the number of sequences of 2 distinct cards
drawn from a deck of cards (sampling without replacement) is

52× 51 =
52!

50!
.

Example. Birthday problem. What is the probability that with k people in a
room, all k have different birthdays? Model sample space S as set of all sequences
of k elements of {1, 2, 3, .., 365}, with uniform distribution. In other words we
are thinking of the experiment as choosing k people in succession and noting the
sequence of birthdays. The total number of people is so large that we can view
it as a question of sampling with replacement. The event E is then the set of all
k-permutations of {1, 2, . . . , 365}. With k = 30, for example,

|S| = 36530, |E| = 365× · · · × 336,

so

P (E) =
|E|
|S|

=
365

365
· 364
365
· · · 336

365
.

The probability that there are two people with the same birthday is then the prob-
ability of the complementary event,

1− P (E).

This is about 0.71. (In the in-class demo we had 34 people, for which the proba-
bility of a coincidental birthday should be about 0.8. As it turns out, we did not
get a birthday in common, a 1-in-5 occurrence.)
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Figure 1: y = 1 + x is the tangent line to y = ex at x = 0, making 1 + x a very
close approximation to ex.

Exponential Approximation.
The tangent line to the graph of y = ex at x = 0 is y = 1 + x. (See Figure

1.) This means that for small values of x, either negative or positive, 1 + x is a
very good approximation to ex, and vice-versa. In fact, for −1 < x < 0, the error
is less than x2

2,
so for example, if x ≈ 0.1, then the error is less than 0.005. The

tangent line lies completely below the graph of y = ex, so that 1 + x < ex for all
x 6= 0.

We can apply this to get an easy-to-compute approximate solution to the birth-
day problem. More importantly, we can apply this to get such a solution to prob-
lems that have the same structure, like finding the probability of a collision when
we hash k items into a hash table of size n, but where the numbers are too large
to make an exact computation impractical.

We saw above that the probability that no two people in a group of k people
share a birthday is

365 · 364 · · · (365− k + 1)

365k
.
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We can rewrite this, and apply the approximation, to get

364

365
· 363
365
· · · 365− (k − 1)

365
=

(
1− 1

365

)
·
(
1− 2

365

)
· · ·
(
1− k − 1

365

)
< e

−1
365 · · · e−(k−1)/365

= e−(1+2+···+(k−1))/365

= e−k(k−1)/(2·365)

< e−(k−1)
2/730.

Observe that as the number k of people gets larger, this probability gets smaller.
If we want to figure out at what point it falls below, say, 0.1, we solve

e−(k−1)
2/730 = 0.1.

We take reciprocals:
e(k−1)

2/730 = 10,

then take natural logs:
(k − 1)2

730
= ln 10,

so
k = 1 +

√
730 · ln 10 ≈ 41.

Thus if 41 people are present, the probability of a coincidental birthday is at least
0.9. The calculation was made just using the fact that 1+ x < e−x, so it just gives
a lower bound for the probability of a coincidental birthday. But in fact, this is
very close to the exact probability: With 41 people present, the probability of a
coincidence is 0.903.

How big is n! ?
The factorial function grows really fast: It is obvious that n! < nn for all

positive integers n, and it is almost obvious that n! > an for all fixed a > 1,
as long as n is sufficiently large—how large depends on a. Thus n! grows more
rapidly than any exponential function, although not as rapidly as nn.

There is a rather amazing formula—called Stirling’s formula–that in a sense
captures exactly how fast n! grows. It is

n! ∼ nn

en
·
√
2πn,

in the following sense:
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lim
n→∞

n!
nn

en
·
√
2πn

= 1.

(You might wonder where the e, and, especially, where the π come from!)
For example, the number of ways to arrange a deck of cards is, to five signifi-

cant digits,
52! = 8.0658× 1067.

Stirling’s formula with n = 52 gives 8.0529× 1067.
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