Lecture 3: Counting, Shared Birthdays

January 29, 2019

Basic counting principles:

|E1 U Ep| = |Eq| + | By
provided E; N B = ().

For sets that are not necessarily disjoint:

|EyU By = |E1| + |Ey| — |Ey N Ey| < By + | By

More generally,
JEl<) B
j=1 j=1

with equality if the £; are pairwise disjoint (any two have an empty inter-
section).

|E1 X E2| = ’E1||E2|

A more general multiplication principle: Sometimes we view a set as the re-
sults of a sequence of r choices, with each different sequence giving rise to a
different element of the set. Say there are £, possibilities for the first choice,
for each first choice there are &, possibilities for the second choice, for each
sequence of the first two choices, k3 possibilities for the third choice, etc.
Then there are k; - - - k, ways to make the choices.

This is what our tree diagrams are: There is a 1-1 correspondence between
the sequences of choices and the leaves of a tree of depth r, where every
node at depth d < r has k41 children. (The root node has depth 0, and the
leaves all have depth r.)



Permutations. How many sequences of % elements of {1,...,n} have all k ele-
ments distinct? For example, with n = 5, k = 3, then (4, 5, 1) is such a sequence,
but (1,5, 1) is not. We have n choices for the first component of the sequence, and
for each such choice, n — 1 choices for the second, etc. (Note that we must have
k < n.) So by the above principle, the number of such sequences is

n!
This is the number of k-permutations of an n-element set.
If n = k, then (n — k)! = 0! = 1, so the number of n-permutations of
{1,...,n} is nl. In this case, we just call them permutations of {1,...,n}. If

n < k, then the formula does not make sense; clearly in this case there are no
k-permutations of {1,...,n}.

Example. As we saw earlier, the number of sequences of 2 distinct cards
drawn from a deck of cards (sampling without replacement) is
52!

52 x 51 = 22
% 50!

Example. Birthday problem. What is the probability that with k& people in a
room, all £ have different birthdays? Model sample space S as set of all sequences
of k elements of {1,2,3,..,365}, with uniform distribution. In other words we
are thinking of the experiment as choosing % people in succession and noting the
sequence of birthdays. The total number of people is so large that we can view
it as a question of sampling with replacement. The event £ is then the set of all
k-permutations of {1,2,...,365}. With k£ = 30, for example,

|S| = 365%, |E| = 365 x --- x 336,

SO

p(E):@:@.@...@
|S| — 365 365 365

The probability that there are two people with the same birthday is then the prob-
ability of the complementary event,

1— P(E).

This is about 0.71. (In the in-class demo we had 34 people, for which the proba-
bility of a coincidental birthday should be about 0.8. As it turns out, we did not
get a birthday in common, a 1-in-5 occurrence.)
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Figure 1: y = 1 + z is the tangent line to y = e at v = 0, making 1 4 z a very
close approximation to e*.

Exponential Approximation.

The tangent line to the graph of y = e* at x = 0is y = 1 + z. (See Figure
1.) This means that for small values of x, either negative or positive, 1 + x is a
very good approximation to e®, and vice-versa. In fact, for —1 < x < 0, the error
is less than 3—2 so for example, if x ~ 0.1, then the error is less than 0.005. The
tangent line lies completely below the graph of y = e, so that 1 + x < e for all
x # 0.

We can apply this to get an easy-to-compute approximate solution to the birth-
day problem. More importantly, we can apply this to get such a solution to prob-
lems that have the same structure, like finding the probability of a collision when
we hash £ items into a hash table of size n, but where the numbers are too large
to make an exact computation impractical.

We saw above that the probability that no two people in a group of k people
share a birthday is

365 -364--- (365 — k + 1)
365" ‘



We can rewrite this, and apply the approximation, to get

@@36‘5_—%_1) — (1_L).(1_i)...(1_ﬂ)
365 365 365 B 365 365 365

< edb ... o (k=1)/365

— o (14244(k=1)) /365
o~ k(k—1)/(2:365)

< ef(k71)2/730_

Observe that as the number £ of people gets larger, this probability gets smaller.

If we want to figure out at what point it falls below, say, 0.1, we solve

e~ (F=1?/T30 ) 1,

We take reciprocals:
2
6(k:fl) /730 107

then take natural logs:
(k —1)%
730

E=1++v730-1n10 =~ 41.

Thus if 41 people are present, the probability of a coincidental birthday is at least
0.9. The calculation was made just using the fact that 1 +x < e™*, so it just gives
a lower bound for the probability of a coincidental birthday. But in fact, this is
very close to the exact probability: With 41 people present, the probability of a
coincidence is 0.903.

= In 10,

SO

How big is n! ?

The factorial function grows really fast: It is obvious that n! < n" for all
positive integers n, and it is almost obvious that n! > a™ for all fixed a > 1,
as long as n is sufficiently large—how large depends on a. Thus n! grows more
rapidly than any exponential function, although not as rapidly as n".

There is a rather amazing formula—called Stirling’s formula—that in a sense
captures exactly how fast n! grows. It is

nn

n! ~ — - V27mn,
en

in the following sense:



n!
lim ——==1.
n—oo - . \/9mn
en
(You might wonder where the e, and, especially, where the m come from!)
For example, the number of ways to arrange a deck of cards is, to five signifi-
cant digits,

52! = 8.0658 x 10°7.
Stirling’s formula with n = 52 gives 8.0529 x 10°7.



