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The variance and standard deviation of a random variable measure how much
the value of a random variable is likely to deviate from its mean–how ‘spread out’
it is.

1 Definition and three important properties.
If X is a random variable with µ = E(X), then

V ar(X) = E((X − µ)2).

This is called the variance of X. We also define

σ(X) =
√
V ar(X),

the standard deviation of X.
Just as E(X) is not defined for every random variable X, V ar(X) might not

be defined, even if E(X) is defined.
When it is defined, we can use the linearity of expectation to derive:

V ar(X) = E((X − µ)2)
= E(X2 − 2µX + µ2)

= E(X2)− 2µE(X) + µ2

= E(X2)− 2E(X)2 + E(X)2

= E(X2)− E(X)2

.
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This is usually an easier way to compute the variance of X.

If c is a constant, then

V ar(cX) = E((cX)2)− E(cX)2

= E(c2X2)− (cE(X))2

= c2E(X2)− c2E(X)2

= c2(E(X2)− E(X)2

= c2V ar(X).

Finally, suppose X, Y are independent random variables. As we’ve seen, this
implies E(XY ) = E(X)E(Y ). The following derivation repeatedly uses the lin-
earity of expectation, and applies independence in the very last step.

V ar(X + Y ) = E((X + Y )2)− E(X + Y )2

= E(X2 + 2XY + Y 2)− (E(X) + E(Y ))2

= (E(X2) + 2E(XY ) + E(Y 2))− (E(X)2 + 2E(X)E(Y ) + E(Y 2))

= (E(X2)− E(X)2) + (E(Y 2)− E(Y )2) + 2(E(XY )− E(X)E(Y ))

= V ar(X) + V ar(Y )− 2× 0

= V ar(X) + V ar(Y )

Again, don’t forget that the hypothesis of independence is crucial for this additiv-
ity of variance to hold. (If it were not, then we would have V ar(2X) = V ar(X+
X) = 2 · V ar(X) for every random variable X, but we know V ar(2X) =
4 · V ar(X), which would give the odd result that every random variable has zero
variance!)

2 Examples of computation of variance

2.1 Bernoulli random variable with parameter p
Let X be a Bernoulli random variable with parameter p. Since the values of X are
just 0 and 1, X = X2. Thus E(X2) = E(X) = p, so

V ar(X) = E(X2)− E(X)2 = p− p2 = p(1− p),

and thus
σ(X) =

√
p(1− p).
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Just for a reality check, let’s recompute this using the original definition: µ =
E(X) = p, so X − µ has value 1− p with probability p, and −p with probability
1− p. So (X − µ)2 has value (1− p)2 with probability p, and p2 with probability
(1− p). Thus

E((X − µ)2) = p(1− p)2 + (1− p)p2 = (1− p)(p(1− p) + p2) = (1− p)p.

We got the same answer, of course. Observe that the method we used first is much
easier.

2.2 Binomial random variable with parameters p, n.
The value of such a random variableX is the number of heads on n tosses of a coin
with heads probability p. As we observed earlier, when talking about expected
value,

X = X1 + · · ·+Xn,

where each Xi is a Bernoulli random variable with parameter p, and the Xi are
pairwise independent. Thus we can apply the additivity of variance, along with
the previous result, and find

V ar(X) = V ar(X1) + · · ·+ V ar(Xn) = np(1− p),

and
σ(X) =

√
np(1− p).

If we take the average number of heads Y = 1
n
·X, then we have

V ar(Y ) =
1

n2
· V ar(X) =

p(1− p)
n

,

and

σ(Y ) =

√
p(1− p)√

n
.

2.3 Spinner
For a continuous random variable X, we use the following fact to compute the
variance:

E(X2) =

∫ ∞
−∞

x2PX(x)dx.
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If X is the outcome of a single spinner, then PX(x) has the constant value 1
for x between 0 and 1, and is zero elsewhere, so

E(X2) =

∫ 1

0

x2dx =
1

3
.

On the other hand, we already found that E(X) = 1
2
, so

V ar(X) =
1

3
− (

1

2
)2 =

1

12
.

2.4 Dartboard
Consider the random variable X that gives the distance of a dart from the center
of a one-foot circular dartboard. We assume the darts are uniformly distributed.
We found that the probability density function is

PX(x) =

{ 0, x < 0
2x, 0 ≤ x ≤ 1
0, x > 1.

Thus

E(X2) =

∫ 1

0

2x3dx =
1

2
.

We already found E(X) = 2
3
, so

V ar(X) =
1

2
− 4

9
=

1

18
.

If you look at the graphs of the densities of the spinner and the dartboard example,
you can kind of see that for the spinner, the probability mass is more ‘spread out’
on the interval [0, 1] than for the dartboard, where it is more clustered toward 1,
so it makes sense that the spinner gives a larger variance.

3 Markov’s inequality, Chebyshev’s inequality, and
the Law of Large Numbers

The proportion of people in a population earning more than 3 times the average
income cannot be greater than 1

3
. That seems sort of obvious. Let’s restate this
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principle in terms of probabilities: Let X be a random variable that takes on only
nonnegative values, and let µ = E(X), and let > 0. Then

P (X ≥ tµ) ≤ 1

t
.

In the example above, X is the salary of an individual selected uniformly at ran-
dom from the population, and t, of course, is 3. This principle is called Markov’s
inequality. In class I gave a proof for discrete random variables; here is a proof in
the continuous case.

tµ · P (X ≥ tµ) = tµ ·
∫ ∞
tµ

PX(x)dx

=

∫ ∞
tµ

tµPX(x)dx

≤
∫ ∞
tµ

xPX(x)dx

≤
∫ ∞
tµ

xPX(x)dx+

∫ tµ

0

xP (x)dx

=

∫ ∞
0

xPX(x)dx

= µ,

which gives the result when we divide both sides of the inequality by tµ. The step
from the second to the third line is from the fact that∫ ∞

a

f(x)dx ≤
∫ ∞
a

g(x)dx

if f(x) ≤ g(x) for all x ≥ a. We also used the fact that X takes on only positive
values, so that µ itself is positive, and thus we can justify division of the inequality
by tµ.

Markov’s inequality as it stands is not terribly useful, but it gives an important
consequence when you apply it not to a random variable X itself, but to Y =
(X − µ)2, so that E(Y ) = V ar(Y ). Then we get

P (Y ≥ t2 · V ar(Y )) ≤ 1

t2
.

The left-hand side is

P ((X − µ)2 ≥ t2 · V ar(Y )) = P (|X − µ| > t · σ(Y )),
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so for any random variable X for which the variance is defined, and any t > 0.

P (|X − µ| > t · σ(Y )) ≤ 1

t2
.

This is Chebyshev’s inequality. It tells us, for example, that the probability that
a random variable differs by more than 3 standard deviations from its mean is no
more than 1

9
.

Example. Let’s roll a single die and let X be the outcome. Then E(X) = 3.5. To
compute V ar(X), we note

E(X2) =
1

6
(12 + 22 + 32 + 42 + 52 + 62) =

91

6
,

and thus
V ar(X) =

91

6
− 3.52 ≈ 2.92,

and
σ(X) ≈ 1.71.

This tells us, for example, that

P (3 ≤ X ≤ 4) = P (|X − µ| ≤ 1

2
)

= P (|X − µ| ≤ σ(X)

3.42
)

= 1− P (|X − µ| > σ(X)

3.42
)

≥ 1− 3.422

≈ −10.7.

So Chebyshev’s inequality told us that some probability is greater than -10.7,
which means it told us nothing at all, since every probability is greater than or
equal to 0.

But let’s roll that die 100 times and repeat the calculation with the sum Y of
the outcomes. Now E(Y ) = 350, and V ar(Y ) = 292, σ(Y ) =

√
292 ≈ 17.1.

Now we have 50 ≈ 2.92 · σ(Y ), so

P (300 ≤ Y ≤ 400) = P (|Y − µ| ≤ 50)

= P (|Y − µ| ≤ 2.92 · σ(Y ))

= 1− P (|Y − µ| > 2.92 · σ(Y ))

≥ 1− 1/2.922

≈ 0.88.
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So there’s at least an 88% probability that Y will be between 300 and 400. Now
the inequality is really telling us something.

You can see where this is going: If we roll the die n times and let X be the
sum, then the standard deviation is about 1.71

√
n, and so

P (3n ≤ X ≤ 4n) = P (|X − µ| ≤ n/2)

= P (|X − µ| ≤
√
n

3.42
· σ(X))

= 1− P (|X − µ| >
√
n

3.42
· σ(X))

≥ 1− 3.422

n
.

This obviously approaches 1 as a limit as the number of tosses gets larger. It’s
also obvious that there is nothing special about 3n and 4n; any pair of bounds
symmetrically spaced about the mean 3.5nwould give the same result in the limit.

Here is the general principle: Suppose we have a random variableX for which
the mean µ = E(X) and variance σ(X)2 are defined. Let ε > 0 be any positive
number (think small). Now let let Yn = 1

n
(X1 + · · · + Xn), where the Xi are

pairwise independent random variables having the same distribution as X—in
other words, Y is the average of the results of n independent trials of whatever
experiment led to X. Then E(Y ) = µ and σ(Y ) = 1

n
σ(X). From Chebyshev’s

inequality,

P (|Yn − µ| > ε) = P (|Yn − µ| >
ε

σ(Y )
· σ(Y )

≤ 1

(ε/σ(Y ))2

=
σ(Y )2

ε2

=
σ(X)2

n2ε2
.

Even if ε is very small, so that 1
ε2

is really, really big, if we make n large
enough, the n2 in the denominator will cause the right-hand side to approach 0 as
n approaches∞. Thus

lim
n→∞

P (|Yn − µ| > ε) = 0.
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In terms of complementary probability,

lim
n→∞

(µ− ε ≤ Yn ≤ µ+ ε) = 1.

This is called the weak law of large numbers. It tells us that the value Yn
approaches µ ‘in probability’: However small a deviation ε from the mean µ you
name, if you perform the experiment often enough, the probability that its average
value differs by as much as ε from the mean is vanishingly small.
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