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Some important words.
e probability space
e sample space
e outcome
e event
e discrete space (finite or infinite)
e continuous space
e probability mass function (= probability distribution)
e probability function

e mutually exclusive events

A probability space is a mathematical model of a random experiment (e.g.,
flipping a coin, rolling dice, throwing a dart at a dart board, picking a person out
of a crowd and asking for their birthday...). Formally, it is a pair (.5, P). The first
component is S called the sample space, the second component P is called the
probability function. We will take these up in turn.



1 Sample Space

Mathematically S is just a set. We think of it as the set of outcomes of the experi-
ment.

Example 1 Toss acoin. S = {H,T}. |S| = 2.

Example 2 Toss NV coins in succession. An outcome is the resulting sequence of
N H’s and T’s.

S={H,T} x---x{H,T}. (cartesian product)
N?irrnes

|S| = 2",

For our in-class experiment, N = 200, so |S| = 22 ~ 10%, far beyond the
capacity of humans or machines to count.

A subset of the sample space is called an event. For example, in this exper-
iment, with N = 4, there are 16 outcomes. The event ‘there are at least two
consecutive H’s’ is the set

E={HHHH HHHT,HHTH HHTT,THHH,THHT,TTHH?}.

Example 3 Roll a single six-sided die

S =1{1,2,3,4,5,6}
S| = 6.

Example 4 Roll two six-sided dice.
Two reasonable choices here to model the outcome of this experiment. Either

S =1{1,2,3,4,5,6} x {1,2,3,4,5,6},

with |S| = 36, or
§=A{(i,j):1<i<j<6},



with |S| = 21.

The first treats ‘a one and a two’ as a different outcome from ‘a two and a one’,
the second treats these as the same outcome. Either one can correctly be used as a
model for this experiment, but the second is preferred, as we will see shortly when
we discuss probability functions.

Example 5 Flip a coin repeatedly until you get heads. The outcome is the number
of tosses you made:

S =1{1,2,3,...} = Z*(set of positive integers).

S is a countably infinite set. This is a discrete infinite sample space. The sample
spaces we saw earlier were finite sample spaces, which are also discrete spaces.

Example 6 Spin a spinner whose circumference is labeled by real numbers be-
tween 0 and 1 (including 0, not including 1). Here the outcome is the point on the
circumference that the spinner stops on. S is the half-open interval

0,1)={zreR:0<z<1}.

(See Figure 1.) This is a continuous sample space
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Figure 1: A spinner. Outcomes are the points on the circumference of the circle.



Example 7 Throw a dart at a circular dart board one foot in radius. Here the
outcome is the point on the board that the dart hits.

S={(z,y) eRxR:2? +1y* < 1}.

This is also a continuous sample space.

The fundamental dichotomy is between discrete (either finite or infinite)
and continuous spaces. Continuous spaces require different mathematics,
and we will take them up later. For the next several weeks, we will deal only
with discrete spaces.

Example 8 Again, throw a dart at a circular dart board one foot in radius. Only
now treat the possible outcomes as (a) the dart hits the bulls-eye (the central disk
six inches in radius); (b) the dart hits the dart board outside of the bullseye; (c)
the dart misses the board entirely. This is now a discrete sample space with three
elements. See Figure 2.



Figure 2: A dartboard with a bullseye. We can treat the sample space as a contin-
uous space (outcomes are individual points) or a finite discrete space (outcomes
are the three regions of the plane—bullseye, ring around the bullseye, and the set
of points not on the board).

2 Probability mass function

aka PMEF, probability distribution. This assigns a measure of likelihood—called the
probability of the outcome— to each outcome in sample space.
Formally,

P:S—10,1].

0, 1] denotes the closed interval {x € R : 0 < x < 1}. So this just says that for
each s € S, P(s) is nonnegative and no more than 1.
One more requirement:

ZP(S) = 1.

ses



Example 9 For the coin toss, we set P(0) = P(1) = 3. This models a ‘fair coin’.
Likewise, a fair die is modeled by P(i) = % foralli € {1,2,3,4,5,6}. These are
instances of uniform distributions on finite sample spaces, in which

forall s € S.

Example 10 For a sequence of N consecutive tosses of a fair coin, we can reason
as follows. We take N = 3 just for the sake of concreteness, but the argument is
the same for any /V: If we repeat the experiment many times, then for about half of
the trials, we will get heads on the first toss; then for half of the trials that gave this
result, we will get tails on the second toss, so that all in all about 1/4 of the trials
will give HT' for the first two tosses. And half of those trials will give tails on
the third toss, so that roughly 1/8 of the trials will give the sequence HT'T. Thus
when we model this experiment we set P(H7T'T') = 1/8. The identical reasoning
applies to any sequence of three tosses, so that every outcome has probability 1/8,
meaning that this is a uniform PMF. In general, for a sequence of N tosses, we
would assign every outcome probability 27V,

We can illustrate the reasoning using tree diagrams like the one in Figure 3
(see the caption).
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Figure 3: Tree diagram illustrating two successive tosses of a coin. For a fair
coin, we reach each of the nodes on the first level in about half the trials, and on
the next toss, we reach each of the four leaves of three in about one-quarter of the
trials, so we model the experiment by a uniform distribution, with a probability
of 1/4 for each of the four outcomes. Such diagrams are very flexible-we can
use them to deduce probabilities even for unfair coins, or a sample space in which
the probability of heads on the second toss depends on what happened on the first
toss.

Example 11 What about the roll of two fair dice? We can reason as above (and
even illustrate it with a tree diagram): imagine that one of the dice is black with
white dots and the other white with black dots. Approximately one-sixth of the
time, the black die will come up 2, and approximately one-sixth of the times this
happens, the white die will come up 3. So we should expect that a 2 on the black
die and a 3 on the white die will occur about % of the times we perform the
experiment.

By the same reasoning, a 2 on the white die and a 3 on the black die should
occur about 3—16 of the times we perform the experiment, and likewise a 2 on both
dice should occur about 3—16 of the time. Thus ‘a2 and a 3’ is twice as likely as ‘a
pair of 2’s’. (This is borne out by actually performing the experiment.)

So if we want to model the roll of two fair dice, it is simplest to use

S ={1,2,3,4,5,6} x {1,2,3,4,5,6},

because the uniform distribution on .S, assigning a probability % to each outcome,
models the behavior we described above. Observe that we could model the same



behavior using the sample space
S={(,7) 1 <i<j <6},

but we would require a non-uniform distribution, setting, for example, P((2,2)) =
+ and P((2,3)) = 1.

Example 12 What if we had an unfair die in which 4,5,6 were each twice as
likely as 1,2,3? We can find the PMF by setting P(4) = P(5) = P(6) = x. Then
P(1) = P(2) = P(3) = 2x. Since the probabilities must add to 1, we get

3-2x +3x =1,
o)
1
r==.
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Example 13 A bin contains 500 black beans, 300 navy beans, and 200 pinto
beans. You reach in without looking and pull out a bean. You can view the sam-
ple space as the set {black, navy, pinto}. If no one of the thousand beans is more
likely to be puled out than any other, we have P(black) = 0.5, P(navy) = 0.3,
P(pinto) = 0.2.

Alternatively, you can treat the sample space as S = {1,2,...,1000}, where
beans 1 to 500 are black, etc., and use the uniform distribution. This is a different
probability space but it models the same behavior.

Example 14 ‘Flip repeatedly until heads’.
With a fair coin, T,H should be equally likely for the first roll, TH,TT equally
likely for the second roll, so we should get P(1) = 3, P(2) = 1, and generally,

: )
P(i) = 27". We need to check that
> P(i)=1.
icz+

This is an infinite series, so its sum is the limit of partial sums. Just a brief digres-
sion on how we compute this: The sum of a finite geometric series

E r,

=0



where r # 1, is given by the formula
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If -1 <r <1 then
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In particular, with r = % we have
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since we have just cut off the first term 1. This is the property we required. By
the way, in general, you cannot rearrange the terms of an infinite series any way
you like and keep the sum the same, but you can if the terms are all positive. So it
does not matter how we order the elements of our discrete infinite sample space.

We cannot have a uniform distribution on a discrete infinite sample space. Do
you see why?

The PMF does not make sense for a continuous sample space (do you see
why?) That is why we will need fundamentally different mathematics to study
continuous spaces.

3 Probability Function

Definition. The probability function, which we also denote by P, assigns a value
in the interval [0, 1] to each event over the sample space. So formally, P is a
function

P:P(S) — [0,1].



Here P(S) denotes the power set of S, that is, the set of all subsets of S.
To define the probability function, we just extend the PMF:

P(E)=> P(s).

<))

In the case where the PMF is uniform, this simplifies to
_ ||

|S]°
Example 15 In the two-dice example ‘rolling two sixes’ is the event {(6,6)} con-
sisting of a single outcome. ‘rolling an eight’ is the event {(2,6), (3,5), (4,4), (5, 3), (6,2) }.
If the experiment consists of tossing three coins, then ‘at least two consecutive
heads ’ is the event { HHH, HHT, T H H }. In the case of fair coins and fair dice,

we use the uniform distribution, so the probabilities assigned to these events are

respectively, %, %, %

P(E)

Basic properties. The following basic properties of the probability function all
follow easily from the definition:

e P(E) > 0 for every event E.
o P(S)=1.
e If ENF = () then
P(EUF) = P(E) + P(F).

More generally, if Ey, Es, ... are pairwise disjoint events (meaning F; N
E; = () whenever i # j, then

P(U;E;) =Y P(Ey).

The sum can be finite or infinite.

e For any events Fy, Fs, .. .,

P(UE) <3 P(E).

e Forany event F, P(F) =1— P(FE).

Set talk: disjoint sets (empty intersection). Probability talk: mutually exclusive
events. They mean the same thing.
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