
Assignment 5: Part 2

CSCI2244-Randomness and Computation
Part 2 due Monday, April 1 at 11:59

This part of the assignment has you implement a Naı̈ve Bayes Classifier. The
intended use is to distinguish which of two newspapers a given newspaper head-
line comes from, or to tell whether a headline is from the Sports or the Politics
section of the newspaper.

I have posted several different datasets (described below). I did a lot of clean-
ing up of the original data, so that in the end, each dataset is an ordinary text file
with one headline per row. I have also provided some Python code for reading
in the file and doing some pre-processing. So most of the messy uninteresting
work has already been done for you. Your job is to implement the classifier: this
will separate the data into training and test sets, build probability models from the
training sets, and evaluate the performance of the classifier on the test sets.

1 The theory.
(You might want to read the Example below first!)

Let’s suppose we want to use the classifier to distinguish whether a brief snip-
pet of a news story is from the Sports section or the Politics section. (We’ll assume
that we know it is one of these two.)

If you choose a word at random from a Sports headline, what is the probability
that this word is, say, ‘prize’? We write this as

P (‘prize’|Sports).

In doing so, we conceive of Sports headlines as a giant ‘bag of words’, in which
each word appears with a particular probability, much like the urns of M&Ms
described in the lecture notes. And we think of Politics headlines as another such
bag.

1

A headline D is a sequence of words

D = (w1, . . . , wr).

We think of D as being generated by reaching into one of the bags r times, and
pulling out the word wi on the ith draw. Thus

P (D|Sports) =
r∏

i=1

P (wi|Sports).

This is the naı̈ve part of Naı̈ve Bayes—in effect we’re treating the sequence of
words

Boston is dominating, and even with Chris Sale headed to the disabled
list, the gap is wide enough that the Red Sox mostly watched as other
teams scrambled.

(one of the Sports items in our dataset) as just as likely to be generated as the
nonsensical string

Sale Boston teams scrambled even as dominating disabled watched
gap, and with Chris headed to Sox the list, the enough that the Red
mostly other is is wide.

While this assumption is obviously false, in practice it often leads to effective
results.

The task of classification is to take a message D and decide whether it is from
the Sports or the Politics section; that is, we want to decide which of the two
values

P (Sports|D), P (Politics|D)

is larger. By Bayes’s Theorem,

P (Sports|D) =
P (D|Sports)

P (D)
·P (Sports), P (Politics|D) =

P (D|Politics)
P (D)

·P (Politics).

We can ignore the common denominator P (D) on the right-hand sides, and apply
the naı̈ve assumption above, so that the problem now is to determine which of the
following is larger:

P (Sports) ·
r∏

i=1

P (wi|Sports), P (Politics) ·
r∏

i=1

P (wi|Politics).

We call these two numbers the ‘Sports score’ and the ‘Politics score’ of the docu-
ment D.

2

1.1 Estimating probabilities
To compute the scores, we need estimates for P (w|Sports) and P (w|Politicss)
for each word w, as well as estimates of P (Sports) and P (Politics). The sim-
plest idea is to gather up all the Sports items in our training data, count the total
number NSports of words, and the total number Nw,Sports of occurrences of w
among these words, and estimate

P (w|Sports) ≈
Nw,Sports

NSports

.

For example, if there are a total of 6000 distinct words in the Sports messages in
the training data, and 150 of them are the word ‘Mets’, then we would approximate

P (‘Mets’|Sports) ≈ 150/6000 = 0.025.

Of course, we do the same thing to estimate P (w|Politics).
We also need to have estimates of P (Sports) and P (Politics). These are

our ‘priors’. Here we require some kind of global estimate of the fraction of mes-
sages that are Sports. For purposes of this problem, you can use the proportions
in the datasets. The Sports dataset contains 1204 items, and the Politics dataset
3290 items, so we estimate

P (Sports) ≈ 1204

1204 + 3290
= 0.366.

1.2 Weeding out stop words
Common English words like ‘the’ and ’and’ can predominate in our text samples,
and their distribution tends to be similar in the two classes of documents. So it is
a common practice to remove these from the document before doing the analysis.

1.3 Add-1 smoothing
What if a word, say, ‘excite’, appears once or twice in the Politics training set, but
never in the Sports training set? P (‘excite’|Sports) will be then be estimated
as 0, while P (‘excite’|Politics) will be positive. If we then try to evaluate a
headline that happens to be from the Sports data and actually contains this word,
then the Sports score will be 0, but the Politics score might be non-zero, so the
document will be classified incorrectly as having come from the Politics section.

3

Many words, of course, will have this property. To get around this, we artificially
add 1 to every count, pretending that every word encountered in the training sets
appears in both sets of headlines: Let V be the set of distinct words appearing in
the two training sets, from either of the two document classes, and set for each
w ∈ V,

P (w|Sports) ≈
Nw,Sports + 1

NSports + |V |
,

and likewise for Politics. If the document D contains words that appear in neither
training set, then we just skip these words in computing the score. In this manner,
every document will get a positive score for both classes.

1.4 Taking logs to avoid underflow
Typically, for any given word w, P (w|Sports) and P (w|Sports) will be quite
small, in the neighborhood of 10−4 or less. If a document contains a few dozen
words, we will wind up risking floating-point underflow when we try to evaluate
the product

P (Sports) ·
r∏

i=1

P (wi|Sports).

To avoid this, we take the logarithm of the product, which is the sum of the re-
spective logarithms, and replace the score by

ln(P (Sports)) +
r∑

i=1

ln(P (wi|Sports)).

Note that this will be a negative number, since we are taking logs of numbers less
than 1. If you want, you can negate it and make the score positive, but just keep
in mind that if you do this, you will want to find which of the two values gives a
lower score.

1.5 Example
We give an example with artificially small numbers. Let’s suppose we receive
two packages of M&M’s from two different factories, and use these as training
data to construct a classifier. (Unlike the example in the notes, we don’t assume
any information about what the color distribution should be. Of course, this is a

4

ridiculously small sample to be used for a training set.) The color counts in the
two packages are as follows:

Factory 1 Factory 2
Color Absolute Relative Absolute Relative

Red 21 0.456 12 0.255
Brown 14 0.304 8 0.170
Green 6 0.130 8 0.170

Yellow 0 0 2 0.043
Blue 5 0.109 17 0.362

Total 46 1.00 47 1.00

When we apply add-1 smoothing, we modify all the absolute counts:

Factory 1 Factory 2
Color Absolute Relative Absolute Relative

Red 22 0.431 13 0.25
Brown 15 0.294 9 0.173
Green 7 0.137 7 0.173

Yellow 1 0.020 3 0.058
Blue 6 0.118 18 0.346

Total 51 1.00 52 1.00

Now suppose we receive a new bag of M&Ms whose origin is unknown, in
which the color distribution is as follows:

Color Quantity
Red 18

Brown 11
Green 10

Yellow 4
Blue 1

Orange 2
Total 46

This is the test data to which we apply the classifier. We believe that Factory
1 M&Ms are twice as likely to have shown up in our new shipment than Factory
2 M&Ms, so we put P (Factory 1) = 2

3
, and P (Factory 2) = 1

3
. We then compute

the Factory 1 score:

5

0.43118 × 0.29411 × 0.13710 × 0.204 × 0.1181 × 2

3
≈ 10−29.

That’s an awfully small number, so we redo the calculation using logarithms:

18×ln(0.431)+11×ln(0.294)+10×ln(0.137)+4×ln(0.2)+ln(0.18)+ln
(2
3

)
= −66.73.

Note that the orange M&M in the test data is ignored, since it does not appear in
either training set.

We compute the Factory 2 score analogously to get -75.36. As −66.73 >
−75.36, the classifier answers Factory 1.

1.6 The datasets
The datasets are contained in a zipped folder. The two text files sports.txt
and politics.txt are ‘snippets’—usually the first few sentences—of stories
that appeared, respectively, in the Sports section and the US section of The New
York Times between August, 2018, and January, 2019. These were obtained using
an API tool available from the Timeswebsite. The files nytimes.txt,nyp.txt,
guardian.txt,wapo.txt consist of headlines from The New York Times, The
New York Post, The Washington Post, and The Guardian. These were
contained in a much larger dataset, that included many more publications as well
as the complete articles—not just the headlines—posted at

https://www.kaggle.com/snapcrack/all-the-news

All of these are ordinary text files, with one item (headline, or snippet) per
line. I got a bit lazy with the Sports and Politics snippets, and did not take care to
weed out a few weird characters that are sprinkled through these files—this does
not appear to affect the results.

1.7 The provided code.
The function get data(filename) reads in the text file and returns a Python
list of the lines in the file. The function text transform(text) takes a string
and returns the list of words in the string, converted to lower case and purged of
stop words and punctuation. For example, a call to get data(’sports.txt’)
returns a list whose fifth item is

6

The remarkably successful Ohio State football coach is learning that
tolerance for off-the-field problems is at an all-time low.

Applying text transform to this item returns the list

[’remarkably’, ’successful’, ’ohio’, ’state’, ’football’, ’coach’, ’learn-
ing’, ’tolerance’, ’offthefield’, ’problems’, ’alltime’, ’low’]

1.8 What you should do
Write a function build models that takes two lists—lists of strings from the
two classes (e.g., Sports and Politics, or New York Times and Washington Post)
to be used as training data— and returns a pair of dictionaries giving the logs of
the smoothed probabilities for the words in the two classes.

Then write a function score(message,model,prior) that takes a head-
line and computes its score relative to the model (which will be one of the dic-
tionaries returned by build models). The argument prior is the value of
P (Sports) or P (Politics) that you use.

Finally, write a function evaluate(d1,d2) that takes two lists returned by
get data(), separates each into a training list and test list, and calls build models
to create the probability models. Then, repeatedly (say, one thousand times), sam-
ple a random item from the combined test sets, and use score to determine which
of the two classes it belongs to. Evaluate how well the classification performs.
Submit both your code and a brief writeup describing the results.

How should you do this evaluation? Treat the smaller of the two classes (which
would be Sports in the Sports and Politics datasets) as the ‘rare trait’ we are testing
for. Thus we treat a Sports story as ‘positive’ and a Politics story as negative. As
we run the classifier on each item in the test set, we compare the classifier result
to the correct answer, and keep four counts:

• TP–the number of true positives. In the Sports/Politics example, this will
be the number of Sports stories that the classifier says are Sports.

• TN–the number of true negatives. This will be the number of Politics sto-
ries classified as such.

• FP–the number of false positives: Politics stories classified as Sports.

• FN–the number of false negatives: Sports stories classified as politics.

7

It is a common practice in machine learning to employ a number of different
statistics to evaluate the performance of this kind of binary classifier. An obvious
one is the accuracy, the proportion of answers that are correct:

accuracy =
TP + TN

TP + FP + TN + FN
.

As our drug testing example shows, accuracy is not the whole story. For instance,
a diagnostic test for a very rare disease that consists in saying ‘You don’t have
it!’ to every subject, could be 99.9% accurate, but it would fail to diagnose any
actual instance of the disease that it encountered. For this reason, other measures
are also computed. The precision is the proportion of positive test results that are
correct.

precision =
TP

TP + FP
.

This was the failing in our example of testing senior citizens for marijuana use:
The accuracy was high, but the precision was only around 50%. The recall is the
proportion of positive instances that are correctly diagnosed:

recall =
TP

TP + FN
.

The ‘accurate’ diagnostic test that always answers negative has zero recall!
You should compute these statistics for the various pairs of datasets to which

you apply your classifier.

2 What I found
By the way, I implemented the classifier to see what kind of results I got. It
performed very well with the Sports vs. Politics example, and so-so results when
comparing two newspapers, say Washington Post versus New York Post. Try this
out for different pairs of newspapers. I did not try (and am not asking you to
try) the version of the problem where the original data represents selections from
more than two classes, (e.g., four different newspapers, five different sections of
the newspaper).

8

