
Midterm Exam

CS381-Cryptography

October 30, 2014

Useful Items

� denotes exclusive-or, applied either to individual bits or to sequences of bits.
The same operation in Python is denoted ˆ.

2

10 ⇡ 10

3
= 1000,

and likewise for any (smallish) positive integer k,

2

10⇥k ⇡ 10

3⇥k
,

so, for instance, 230 is about 109, or one billion. (In fact, a ‘gigabyte’ is not one
billion bytes, but 230 bytes.)

Security Benchmarks

– Through use of a custom hardware unit that costs about $10,000 to build, a
56-bit DES key can be recovered by exhaustive search in about a week.

– The record for factoring a product of two primes is a number of 768 decimal
digits. The calculation, distributed over hundreds of processors, took two
years.

– There are about 3⇥ 10

7 (30 million) seconds in a year.

Language statistics There are about 100 printable ASCII characters. In ordi-
nary ASCII text in English (including punctuation and capitalization) the most
common character by far is a space, accounting for about 18% of all charac-
ters, distantly followed by lower-case ‘e’, which accounts for about 9% of all
characters. Note that this is different from the letter-frequency statistics we used
earlier, in which we considered only the 26 letters and ignored punctuation and
capitalization.

1

1 Insecure Encryption in a very old version of Microsoft

Word

The earliest version of encryption in Microsoft Word (present in Windows 95) was to
have the user select a password of printable characters, and then simply XOR repeated
copies of the password with the plaintext. For instance, if the password was

hEre_15a

*

p@5SwD

which has 16 characters, the the first byte of ciphertext will be the first character of
plaintext XORed with ‘h’, the second byte of ciphertext will be the second character of
plaintext XOR’d with ‘E’, etc. Once the seventeenth charcacter of plaintext is reached,
we return to the first character of the password and XOR with ‘h’, etc. In general, if
the three strings are viewed as lists of bytes, we have, in Python:

ciphertext[i]=plaintext[i]ˆpassword[i % 16]

Assume all passwords have exactly 16 characters.

(a) How many different passwords are there? Is it feasible to carry out an exhaustive-
search attack that recovers the plaintext from ciphertext by trying out all possible keys?
There are three possible answers here: (i) it can be done on my laptop by a program
that runs in under an hour; (ii) it can be done with specialized hardware and/or a widely
distributed network of collaborating computers in under a year; (iii) it cannot be done
with available computing power in under a century. Pick the best answer and justify
with a rough calculation.

Solution. With an estimate of 100 printable characters there are

100

16
= 10

32 ⇡ 2

32⇥3.3
> 2

100

keys as a very rough approximation. The best answer is (iii): Using the DES cracker as

a benchmark, we would need 2

44 times the computing power. 244 is about 16 trillion
(one million million), so under the very implausible scenario that one million copies
of the machine are available, you would need 16 million weeks or about three hundred
twenty thousand years. (It is true that a single encryption for this cipher is just an
XOR, and thus much faster than a DES encryption, but this is still not going to make
the attack plausible.)

Common errors: Mild : using 256

16 because you didn’t restrict the password bytes
to printable characters. Fantasy math version 1: writing something like 16

100
, or get-

ting 100

16 correctly and then ‘simplifying’ it using magical laws of exponents of your
own invention. Fantasy math version 2: getting something like the right magnitude for
the number of keys, and then saying it wouldn’t take all that long to count that high.

(b) Assume that the original plaintext is at least several thousand characters long, in
ASCII characters, consisting of ordinary English sentences with spacing, punctuation,

2

and the like. You possess the encrypted version of the file. Describe an efficient proce-
dure for recovering the first character of the password. (The same procedure, applied
fifteen additional times, should recover the entire password, which can then be used to
decrypt the file.)

Solution. Collect the first, 17th, 33rd, 49th, etc. bytes of plaintext. These are the bytes
that were encrypted using the first key character. Find the most commonly occurring
byte. XOR with the ASCII code for the space character. The result is the ASCII code
for the first key character. This will hold unless you have some very weird text that
does not use the space character in the conventional way, but that would not accord
with the description in the problem.

You may have noticed the resemblance to the Vigenére cipher, but here the crypt-
analysis is even easier: you don’t have to worry about determining the length of the
key because I gave it to you, and the statistics are so extremely skewed by the pres-
ence of the space character that you don’t have to do anything fancy with the statistics.
Most students recognized that this resembled the Vigenre cipher, but then tried to do

much more work than was really required, for instance XORing the selected ciphertext
bytes with every one of the 100 characters, and/or doing a fancy frequency analysis.
(This was usually graded correct.) Some students did a brain dump about Vigenére
cryptanalysis, but did not connect it with the problem at hand.

(c) Now suppose that documents are not ordinary English, but rather random, uniformly
distributed sequences of characters. You have a brief plaintext document a.doc, its
encryption a enc.doc, and the encryption b enc.doc of a long second document.
Describe an efficient procedure for recovering the plaintext b.doc. (Assume the user,
like most users, employed the same password for each document he encrypted.)

Solution. XOR the first sixteen bytes of a enc.doc with the first sixteen bytes of
a.doc. This is the key, which you can now use to decrypt the entire second document.

Many students recognized that this is the case of the one-time pad being used two
times, and thus suggested computing the entire XOR of a enc.doc and a.doc. This
was graded as correct, but it’s just about twice as much work as necessary, since given
the structure of this cipher we only need to use 16 bytes of known plaintext.

3

2 Block Cipher in Cipher Feedback Mode

The accompanying diagram shows a block cipher mode of operation called cipher feed-

back mode (CFB). Like most of the other modes we have seen, there is an initial IV

block that is generated at random and sent in the clear. Like CTR mode, this mode uses
a block cipher as a stream cipher, XORing the plaintext with the keystream. Unlike
CTR mode, the keystream cannot be generated completely from the IV and the key,
since each keystream block depends on the preceding plaintext blocks.

Here are equations and a diagram describing the encryption algorithm. The inputs
are the plaintext blocks P1, P2, . . . , along with the IV block and the key K. E is the
block encryption function. The outputs are C0, C1, C2, . . . , where C0 = IV.

C0 = IV,

Ci = Pi � E(K,Ci�1),

if i > 0.

(a) Write equations for the decryption function, giving the plaintext blocks P1, P2, . . .

in terms of C0, C1,

Solution.

Pi = Ci � E(K,Ci�1),

for i > 0. Notice that you don’t need the block decryption function. (This is what
happens as well with other modes, like CTR, in which the block cipher is used as a
stream cipher.)

A few students were desperate to work the decryption function into this problem,
and it is indeed possible to write an equation involving D, for instance

Ci�1 = D(K,Pi � Ci).

But this is not what was asked for, and is unhelpful when the task at hand is to determine
the plaintext blocks from the given ciphertext.

(b) Suppose this encryption mode is used with a block cipher with a four-bit block size.
The shared secret key is K, and the block encryption function EK is given in Table 1.
You receive a message

0000 1111 0000.

Determine the plaintext message. (Remember that the first block of the received mes-
sage is the IV, so that there will be two plaintext blocks, not 3.)

Solution. We have

P1 = C1 � E(K,C0) = 1111� E(K, 0000) = 1111� 0011 = 1100.

P2 = C2 � E(K,C1) = 0000� E(K, 1111) = 0000� 1110 = 1110.

4

(c) This problem concerns what happens when you re-use the initialization vector in
CFB mode. You receive two new messages that were encrypted with a different key
K

0 (so that Table 1 is no longer relevant). The messages are

0000 1111 0000

0000 0000 1111.

Let P1P2 and P

0
1P

0
2 denote the corresponding plaintext messages. Describe all the

information you can obtain about the blocks Pi and P

0
i from this description.

As above,
P1 = 1111� E(K

0
, 0000)

P2 = 0000� E(K

0
, 1111) = E(K

0
, 1111).

P

0
1 = 0000� E(K

0
, 0000) = E(K

0
, 0000)

P

0
2 = 1111� E(K

0
, 0000).

This gives
P

0
2 = P1.

P

0
2 = P

0
1 � 1111,

in other words, P 0
1 differs from P1 = P

0
2 in every bit. What about P2? It looks like

we get no information, because we do not know what E(K

0
, 1111) is, but we do know

that it is different from E(K

0
, 0000) = P

0
1. So we also have

P2 6= P

0
1.

And this is as far as we can go, since any choice of Pi, P
0
i consistent with the three

displayed equations above is possible. One way to look at this problem is that in the
absence of any information, there are 16

4
= 65536 possibilities for the four blocks,

but we are able to whittle this down to 16 ⇥ 15 = 240 possibilities because of the
regularities in the ciphertext messages.

5

3 Number Theory and RSA

(a) Compute
101

48,000,000,000,023
mod 35

by hand. (HINT: Use Fermat’s Theorem and the Chinese Remainder Theorem. When
you apply the CRT, you need not use the explicit formula for the solution of the two
congruences; the numbers are so small that you can solve the system by inspection.)

Solution.

101 ⌘ 1 (mod 5),

so
101

48,000,000,000,023 ⌘ 1

48,000,000,000,023
= 1 (mod 5).

101 ⌘ 3 (mod 7),

so by Fermat’s Theorem,

101

48,000,000,000,023 ⌘ (3

6
)

8,000,000,000,003 · 35

⌘ 1

8,000,000,000,003 · 35

= 3

5

= 3 · (32)2

⌘ 3 · 22

= 12

⌘ 5 (mod 7).

So we are looking for the unique solution to

x ⌘ 1 (mod 5)

x ⌘ 5 (mod 7).

We can do this by inspection, checking 6,11,16, etc., until we get a result congruent
to 5 modulo 7. The correct answer is 26. (Alternatively, you could apply the formula
giving the explicit solution to this pair of congruences, but that is actually more work.)
Typically, students failed to take advantage of all the tools that make it possible to solve

this problem without ever having to write down a large number. (And even with that,
some still managed to solve it correctly!)
(b) A public RSA key has encryption exponent e = 3 and modulus N = 55. Show all
the steps in the calculation of the decryption exponent d.
Solution. The decryption key is

3

�1
mod (10 · 4) = 3

�1
mod 40,

since since 55 = 5 ⇥ 11. You really could do this by simple trial and error, observing
27⇥ 3 = 81 ⌘ 1 (mod 40). If you apply the extended Euclid algorithm, there is only
one division:

40 = 13⇥ 3 + 1,

6

so
3

�1
mod ⌘ �13 ⌘ 27.

In either case we get the result 27.

A common error was computing 3

�1
mod 55 instead of 3�1

mod 40. Another was
giving the answer as 13.

(c) Using your result from (b), determine how many multiplications and reductions
mod 55 are required to decrypt a ciphertext C. (You do not have to decrypt anything,
just understand the algorithm.)

Solution. To decrypt a ciphertext C you need to compute

C

27
= C

16 · C8 · C2 · C mod 55.

We need four multiplications (squarings) and reductions to compute C

k
mod 40 for

k = 2, 4, 8, 16, and three more multiplications and reductions to multiply these four
values together. So there are 7 multiplications and 7 reductions in all.

Some students just missed the business about repeated squaring entirely. Others
knew that repeated squaring was involved but gave a generic answer rather than one
specific to the parameters of this problem. A common, and much less serious error,
was to neglect to count the three additional multiplications at the end.

And someone came up with the following ingenious solution: Compute C

27
mod

11, which is the same as C6
mod 11, and C

27
mod 5, which is the same as C3

mod

5, and then apply the Chinese Remainder Theorem.
(d) A friend who is curious about cryptography asks you why symmetric AES keys are
only 128 bits long, while the decryption exponent and modulus for RSA keys are about
2048 bits long. Give a succinct answer.

Solution. Key length for AES is chosen to be resistant to brute-force attack, but
the RSA modulus has to be large enough to resist factoring, which requires a much
larger number. (128-bit integers can be factored efficiently, although not with the naı̈ve
algorithm of repeated trial division.)

Serves me right for asking an essay question. I got a lot of brain dumps with correct
but irrelevant information (the fact that RSA is used in practice to encrypt keys, that
there are various attacks against small RSA exponents or messages) as well as the
occasional downright falsehood.

7

Figure 1: Cipher Feedback Mode Encryption

M E(K,M)

0000 0011
0001 0001
0010 0111
0011 1100
0100 1001
0101 1111
0110 0000
0111 1010
1000 1101
1001 0010
1010 0101
1011 0110
1100 0100
1101 1000
1110 1011
1111 1110

Table 1: Block encryption function for the block cipher in Problem 2, with respect to

some fixed key K.

8

