
CSCI3381-Cryptography

Lecture 2: Classical Cryptosystems

January 17, 2017

This describes some cryptographic systems in use long before the advent of
computers. All of these methods are quite insecure, from the modern standpoint,
but they illustrate some important principles.

1 Caesar Cipher (Shift Cipher)
This method was attributed to Julius Caesar (1st century BC) by Suetonius in
Lives of the Twelve Caesars (2nd century AD). As crude as it is, the basic idea
of a shift cipher reappears in the Vigenère Cipher and the one-time pad that we
discuss further on, and (with a 26-letter alphabet replaced by a 2-letter alphabet)
in modern stream ciphers.

Each letter of the alphabet is identified with a number in the set {0, 1, . . . , 25}.
SoA is 0,B is 1, etc. The key is also an integer k ∈ {0, 1, . . . , 25}. The encryption
algorithm proceeds letter by letter, replacing each letter j of the plaintext by j +
k mod 26. The decryption algorithm is the same, using −k mod 26 in place of k.
Example. The plaintext “ATTACK AT DAWN” is identified with the sequence of
numbers

0, 19, 19, 0, 2, 10, 0, 19, 3, 0, 22, 13

(In this and the next two examples, we eliminate the spacing between words.) The
encryption with key k = 9 is then

9, 2, 2, 9, 11, 19, 9, 2, 12, 9, 5, 22

which is transmitted as
JCCJLTJCMJFW.

1



The recipient, to decrypt, turns this back into the corresponding numerical
sequence and then adds −9 mod 26 = 17 to decrypt.

Here is a formal description: The key space is

K = {A,B, . . . , Z} = {0, . . . , 25},

and the message spaceM is the set of finite sequences of elements of K, which
we typically denote by K∗. If

m = m1m2 · · ·mr ∈M,

then
E(k,m) = c1c2 · · · cr,

where for each 1 ≤ i ≤ r,

ci = (mi + k) mod 26.

Decryption is the same as encryption, with the encryption key replaced by its
additive inverse:

Dk = E−k mod 26.

Security. If an attacker suspects that this method was used, the cipher is broken
(without a computer!) by a brute-force ciphertext-only attack, since there are only
26 keys, and in all likelihood only one of the 26 decryptions will make sense.

While this attack is very easy to carry out by hand, the question of how to do
it with a computer is an interesting one. It’s trivial to compute all 26 decryptions,
but how do we pick out the right one without human supervision? We’ll return to
this point in a moment.

1.1 Binary variant
Computers use the two-letter alphabet {0, 1} rather than a 26-letter alphabet, and
the shift operation is just the exclusive-or operation ⊕ on bits:

0⊕ 0 = 1⊕ 1 = 0, 0⊕ 1 = 1⊕ 0 = 1.

The exclusive-or operation is extended in a natural fashion to sequences ofm bits,
by performing the operation bit by bit. For example,

00101⊕ 10111 = 10010.

2



The standard ASCII representation of a character is a single byte. Python has the
nice property of allowing you to treat any byte as a character, even if it does not
correspond to a printable character. Thus we can use a single character k as a
one-byte shift value, and encrypt a sequence

p1p2 · · · pr
of plaintext bytes as

c1c2 · · · cr,
where ci = pi ⊕ k. The nice thing here is that encryption is exactly the same
as decryption, with no modification of the key. Here is an example. Suppose the
plaintext is ‘Attack at dawn.’ (Here we allow spaces and punctuation in the string.)
Let the key be ‘&’. As bytes written in hexadecimal the plaintext is

41 74 74 61 63 6b 20 61 74 20 64 61 77 6e 2e

and the key is 26. So, for example, the first byte of the ciphertext is

41⊕ 26 = 01000001⊕ 00100110 = 01100111,

or 67 in hex, ‘g’ in ASCII. If you try to represent the entire ciphertext as a Python
string it will appear as

gRRGEM\x06GR\x06BGQH\x08

since Python cannot display the bytes with hex values 06 and 08 as printable
characters.

Here the size of the keyspace is 256 rather than 26, but of course that is still
very small, and the system is broken manually by a brute-force attack.

2 Monoalphabetic Substitution Ciphers
The Caesar cipher is a special instance of a cryptographic system that you see
printed in newspapers and on puzzle sites as ‘Cryptogram puzzles’. Here is a
typical example, taken from one such site:

SAM QOBRAGVSLGOS SJPU AGO QVSGMES
OAM DVO OCTTMLGEN TLJK V OQPGS
QMLOJEVPGSB. OAM LMQPGMU, "QVLS JT
KM VNLMMO DGSA BJC. HCS SAM JSAML
QVLS JT KM DJCPU PGXM V OMRJEU
JQGEGJE."

3



The idea is that each ciphertext letter represents a fixed plaintext letter. For in-
stance, in this puzzle, ‘S’ is the encryption of ‘T’ and ‘R’ is the encryption of ‘C’.
(I’ll leave it to you to solve the rest of the puzzle and recover the plaintext, which
is a dumb joke.) Providing the spacing between words and the punctuation makes
the puzzle quite simple; it’s a lot more interesting if you give it in the form

SAMQO BRAGV SLGOS SJPUA GOQVS GMESO
AMDVO OCTTM LGENT LJKVO QPGSQ MLOJE
VPGSB OAMLM QPGMU QVLSJ TKMVN LMMOD
GSABJ CHCSS AMJSA MLQVL SJTKM DJCPU
PGXMV OMRJE UJQGE GJE

Here the message spaceM is again the set of all finite sequences of letters, but
the key spaceK is the set of all permutations, that is, all one-to-one onto functions

π : {A,B, . . . , Z} → {A,B, . . . , Z}.

The encryption of a sequence

p1 · · · pm ∈M

of plaintext letters is
c1 · · · cm,

where for each i, ci = π(pi). Decryption is given by

D(π,m) = E(π−1,m),

where π−1 is the inverse permutation of π. Observe that the Caesar cipher is just
monoalphabetic substitution with a very restricted set of keys.
Security and cryptanalysis The number of keys is the number of permutations
of a 26-element set, namely

26! ≈ 4.03× 1026.

A brute-force attack is not feasible on a key space this large. But this kind of
puzzle can be solved by hand. How is this possible?

There are two serious weaknesses: First, the frequency distribution of letters
in English is very uneven, and this same uneven distribution is present in the
ciphertext. (Figure 1.)

4



Figure 1: Relative letter frequencies in English. The six most frequently occurring letters
ETAOIN account for about 44% of all letters in a large corpus.

Thus in a long ciphertext, one might well guess that the most frequently occur-
ring character is the encryption of one of the more commonly-occurring letters,
like E,T, A, most likely of E. Similarly, the pairs and triples of successive let-
ters that occur give away a lot of information: The triple ‘PKD’ should probably
never occur in the plaintext, even across word boundaries; the pair ‘TH’ is very
common.

Second, each character of ciphertext depends on only one character of plain-
text and one character of the key. Thus when one part of the key is guessed
correctly, it is possible to build on this progress to get other parts of the key. In
better systems, changing any piece of the key or the plaintext should completely
change the ciphertext.

3 Statistical Analysis
We return to the question raised earlier about automatically selecting the correct
decryption from the 26 candidate plaintexts produced by the brute force attack on
the Caesar cipher. We show a statistical method for doing this, which we will also
use in analyzing the Vigenère cipher below.

Consider the following experiment—we have two bins of letters, one contain-
ing all the letters from a long English text, and the other containing the letters

5



from a Caesar-encryption of the original text. We choose one letter from each bin.
What is the probability that the two letters are the same?

If α is a letter, then we will denote by Pα the probability that a randomly-
selected English letter is α. For example, Pe gives the largest value, about 0.121,
while Pz gives the smallest value 0.0002. Let’s suppose that the second bin was
made by encrypting with a shift of 21, so that ‘a’ is the encryption of ‘f’, ‘b’ the
encryption of ‘g’, etc. The probability that both letters are ‘a’ is then PaPf , that
both are ‘b’ is PbPg, and, since these are disjoint events, the probability that the
two letters are the same is the sum

PaPf + PbPg + PcPh + · · ·PzPe.

If the two bins are identical (i.e., if the shift is zero), then the probability that the
two letters are the same is

P 2
a + P 2

b + · · ·+ P 2
z .

It is not too hard to prove that the second value is larger than the value that we
would get with any nonzero shift. In fact, it is a lot larger: We can use tabulated
values for the frequency of letters in large texts (like those used to produce the
graph in the figure) and compute the first sum for different shift values:

0 0.06441384
1 0.03943454
2 0.03078133
3 0.03429628
4 0.04417932
5 0.03421635
6 0.03645208
7 0.03886936
8 0.03449249
9 0.03358449
10 0.03854469
11 0.04354422
12 0.03899343
13 0.04120904
14 0.03899343
15 0.04354422
16 0.03854469

6



17 0.03358449
18 0.03449249
19 0.03886936
20 0.03645208
21 0.03421635
22 0.04417932
23 0.03429628
24 0.03078133
25 0.03943454

With no shift, the sum is 0.064, but for nonzero shifts, the sum is never larger
than 0.044. This gives us a method for distinguishing original plaintext from
Caesar-encrypted plaintext: We count the number fα of occurrences of the letter
α in the text, and compute

Pafa + · · ·Pzfz.

If this is real English text, then the sum will be approximately 0.064n, where
n is the length of the text, but for encrypted text it should not be much larger
than 0.044n. Thus if we want to find out which of the 26 possible decryptions of
our ciphertext is the right one, we just have to compute this sum for each of the
candidate plaintexts and take the one that gives the largest value.

4 Vigenère Cipher (polyalphabetic substitution ci-
pher)

This dates to the 16th century. (The actual inventor was named Bellaso; Vigenère
invented a related system, but the misattribution has stuck.) It was widely thought
to be essentially unbreakable by commentators writing as late as the early 20th
century, but successful attacks were discovered by researchers in the 19th century.

Instead of using a single shift value, as in the Caesar cipher, the Vigenère
cipher uses different shift values for different letters of the plaintext. The key is
a string typically between 5 and 10 letters long. The shift values are given by the
usual integer encodings (0 for A, 1 for B, etc.) of the key characters.
Example. Here the key is

PIGSTY

7



and the plaintext is
LAUNCH THE ATTACK AT DAWN ON MONDAY UNDER CLEAR SKIES.

HOLD YOUR POSITION IN LIGHT RAIN. RETREAT IN HEAVY RAIN. SEND
ADVANCE SCOUTING PARTIES TO VERIFY ESCAPE ROUTES.
The table below shows the encryption of the first 15 characters. This is just addi-
tion of each column mod 26, using the integer encodings of the characters.

L A U N C H T H E A T T A C K
P I G S T Y P I G S T Y P I G
A I A F V F I P K S M R P K Q

Decryption is done in exactly the same way, subtracting the shift value instead
of adding it.
Formal Description Here M is again the set of all finite sequences of letters,
while

K = {0, 1, . . . , 25}k,

i.e., sequences of k letters, where k is the length of the key. Encryption is given
by

E(s0s1 · · · sk−1, p0p2 · · · pm−1) = c0 · · · cm−1

with
ci = (pi + si mod k) mod 26.

Decryption is the same, with s0, . . . , sk−1 replaced by−s0 mod 26, . . . ,−sk−1 mod
26.

Security and cryptanalysis. Using several different shift values smooths out the
uneven distribution that we get from using a single shift or a single substitution
alphabet, so the frequency distribution of letters in the ciphertext is much more
uniform. Another advantage over the monoalphabetic substitution was that the
short key could be easily memorized.

With a key length of 9, the number of keys is about 5.4 × 1012. Even with
computers, checking every key is a stretch, but can be carried out. In the 19th
century environment, of course, a brute-force attack was absolutely out of the
question.

Cryptanalysis proceeds in two phases: The first phase determines the length of
the key, and the second recovers the key itself. For the first step, align the cipher-
text with itself advanced i characters for i = 2, 3, . . . , 9 characters (as high as the
key length is likely to be) and count the number of matches for each alignment.
The table below shows the alignment for the first few characters of ciphertext in
our example, with i = 4, 5.

8



A I A F V F I P K S M R P K Q
A I A F V F I P K S M

A I A F V F I P K S
There are three matches for i = 5 in this example). If the amount we advanced

the text is a multiple of the key length, then the probability that a pair of aligned
letters matches is

P 2
a + P 2

b + · · ·+ P 2
z .

If the amount is not a multiple of the key length, then we are essentially repeating
the experiment of drawing one letter from each of two distributions with different
Caesar shifts, and as we saw above, the probability of a match is significantly
smaller. Thus the advance that gives the largest number of matches is probably
the correct key length.

In the second step we use the information about the key length (let us suppose
it is 6) to divide the text into 6 subtexts: the first subtext consists of the 1st, 7th,
13th, etc. characters, the next consists of the 2nd, 8th, 14th, etc., characters, and so
on. Each of these subtexts represents a selection of English characters encrypted
with a single shift. It remains to find the shift associated with each subtext. Once
again, we compute the values

(fa, fb, . . . , fz),

giving the number of occurrences of a, b, c, etc.. These should be roughly pro-
portional to the probabilities Pa, Pb, . . . , but shifted: for instance, we would have
(fa, fb, . . . , fz) is approximately a multiple of (Py, Pz, Pa, . . . , Pw, Px) if the shift
value was 2. We use an estimate of the probabilities Pa, Pb, . . . , Pz and compute
each of the sums

faPa + fbPb + · · ·+ fzPz,

faPb + fbPc + · · ·+ fzPa,

· · ·

faPz + fbPa + · · ·+ fzPy.

Again our inequality suggests that the largest of these gives the correct shift for
each subtext, and thus reveals the key. An example is worked out in detail in the
Python notebook posted on the course website.

9


