CSCI3381 Cryptography-Assignment 2
Perfect secrecy, pseudorandom number generators,
stream ciphers

due Wednesday, February 9 at 11:59 PM

January 27, 2017

1 Overview

The first part of this assignment consists of some pencil-and-paper ‘theory’ ques-
tions, organized around the definition of perfect secrecy. Although we will leave
perfect secrecy behind (because it is essentially unattainable in practice), the for-
mal definition of perfect secrecy serves as a springboard to formulating a precise
definition of practical security, and the exercises remain relevant.

The second part consists of programming problems in which you are asked to
break some stream ciphers that were poorly implemented.

2 Problems about perfect secrecy.

1. Consider a monoalphabetic substitution cipher applied to plaintexts consist-
ing of just a single letter. That is,

M=1{0,1,...,25}.

The keyspace K is the set of all permutations of M.

(As usual, we identify the letter A, ..., 7 with this set of integers.) Show
that this is perfectly secret.

2. Now let us modify the Caesar cipher so that once again,
M ={0,...,25},

but

The encryption function is the same:
E(k,m) = (k +m) mod 26.

Because we have eliminated & = 0 as a possibility, we do not allow a plain-
text letter to be ‘encrypted’ by itself. Show that this system is not perfectly
secret. Find two messages m, mo such that in the indistinguishability ex-
periment performed with these two plaintexts, the adversary can distinguish
an encryption of m; from an encryption of meo with probability greater than
1

3
. Exactly the same problem as above, but with this difference: The key space

1S NOW
K =1{0,1,...,30}.

. Now consider a monoalphabetic substitution cipher where, as usual, K is
the set of all permutations of {0,...25}, and M consists of all two-letter
sequences. Show that this system is not perfectly secret. Find two messages
m1, meo such that in the indistinguishability experiment performed with these
two plaintexts, the adversary can distinguish an encryption of m; from an
encryption of meo with probability greater than %

. The purpose of this problem is to demonstrate how an insecure pseudoran-
dom generator leads to an insecure encryption method. Here

M ={0,1}*%,

but
K = {0, 1}128.

Encryption and decryption are given by
E(k,m) = D(k,m) = G(k) & m,

where G : {0,1}12% — {0, 1}250. That is, this is a stream cipher with pseu-
dorandom generator G.

A design flaw is discovered in the PRG: It turns out that approximately %
of the keys k lead to G (k) having least significant bit 1. Find two messages
m1, meo such that in the indistinguishability experiment performed with these
two plaintexts, the adversary can distinguish an encryption of m; from an
encryption of mo with probability greater than % (NOTE: Since the keys
are much shorter than the messages, we know that this cipher does not have

perfect secrecy, but we do not a priori know if there is an efficient method
for distinguishing which of two plaintexts is encrypted. You need to show
that in this case there is a very simple method that is correct significantly
more than half the time.)

3 Bad crypto in the wild 2: Misusing random number
generators

Let us recall the basic definitions. A pseudorandom number generator (PRG) is
an easily-computable function G takes a seed value s € {0,1}*, and produces a
longer bit string G(s) € {0, 1}*(®) that looks’ random. The idea is that for a small
number k of truly random bits, you obtain a large number |¢(k)| of apparently
random bits.

A stream cipher built on the PRG G uses the shared key s to encrypt and de-
crypt messages of length ¢(|s|):

m— G(s) & m.

Every programming environment has a built-in random number generator (such
as the random package in Python), but these are not cryptographically secure ran-
dom number generators and can never be used for cryptographic applications like
stream ciphers. The second problem below illustrates this with an implementation
of Java’s built-in random number generator.

Even if the PRG is cryptographically secure, if there is not a sufficient amount
of randomness built in to the seed that is used, the resulting stream cipher is in-
secure. This is illustrated in the first problem below. The problem uses the RC4
stream cipher. While there are weakness in RC4, for purposes of our problem, we
can suppose that it is secure. The attack in the problem is based on poor generation
of the key.

This problem is inspired by real-life failures: In the 1990’s, Netscape, which
first developed the SSL protocol for encrypting Internet communication, released
a version in which the PRG was seeded by the time of day, the process ID, and
the parent process ID. These quantities taken together did not provide sufficient
randomness, and it was possible to predict the seed and break the security of the
system. In 2008 it was discovered that a bug had inadvertently been introduced into
the Debian Linux implementation of SSL, so that the number of available values
used to seed the random number generator was reduced to 32,768. (You can read a
bit about these attacks, and find links to more information, in the Wikipedia article
‘Random number generator attack’.

6. An implementation of the RC4 stream cipher is provided on the course website.
As you can see, both the algorithm for producing the initial state from the seed
value, and for updating the state and computing the next output byte of the stream,
are very simple.

(a) (In this part of the problem you are not launching an attack, just decrypting
something.)

Because RC4 is a stream cipher, keys cannot be reused, and thus a new key
must be generated and somehow shared with each new message. One way to ad-
dress this problem is the following scheme: Alice and Bob share a long-term key
k, which in our example will be 40 bits. To encrypt a new message m, the sender
generates a random string (in this example, 24 bits) called an initialization vector,
or IV. The IV is concatenated to the key and use to encrypt the message, and then
the IV is concatenated again to the ciphertext, so that the recipient receives

IV||E(IV||k,m).

To decrypt, the recipient strips away the 3-byte IV at the start of the message,
concatenates that to the shared key k, and then decrypts. (This is exactly how
things are done in the WEP encryption standard for for WiFi networks. This rather
primitive way of combining the IV and the key, coupled with subtle weaknesses in
RC4, led to devastating attacks on WEP.)

Alice and Bob share the 40-bit key whose hex representation is

7f65a580cb

(I copied this off of a WiFi router!) She sends Bob the ciphertext whose base 64
representation is posted on the website. Decrypt the message.

(b) This part of the problem does not involve an initialization vector, but just seeds
the RC4 generator with the time. The problem is that this does not supply enough
randomness at the outset.

Alice wants to encrypt a text file on her disk with RC4. (She will need a
different key for each file she encrypts, which is one reason for not using a stream
cipher to encrypt files on disk.)

She seeds the RC4 generator using the following code:

import time
s=int (time.time ())
k=str (s)

That is, she strips the fractional part from the time, and then converts the time,
which is 10 decimal digits long, into the corresponding ASCII string of digits.
That is, she is using a 10-byte=80-bit key, which looks pretty random to her.

4

She writes the value of the key in a safe place, and then uses it to RC4-encrypt
her file, then converts it to base64. The result is posted on the website.

You steal Alice’s laptop and attempt to decrypt the file. While you cannot read
it at first you are still able to read the system information about the file and find
that it was created on January 27, 2017. You are pretty sure that the original was a
plain text file in normal English.

Recover the plaintext.

7. I have posted a Python implementation of the built-in random number generator
in Java, together with code for using it as a stream cipher. It is a linear congruential
generator, and is definitely not cryptographically secure. The generator maintains a
48-bit state. Each time next _bytes () is called, the state is updated via a simple
formula, and the high-order 32 bits of the state are returned as the next block of
four bytes in the pseudorandom stream. More precisely, if the current state is s,
then the next state is given by

s’ = (25214903917 x s 4+ 11) mod 28

and the next four bytes of output are | s’/2'¢]. The state was initialized by supply-
ing a secret pass-phrase to init_state (). Observe that the first four bytes of
the output are the high-order 32 bits of the next state after the initial one. Your job
is to guess the other 16 bits of the state and decrypt the ciphertext, which is posted
in base64 format on the website. This time I will provide you with a little bit of
known plaintext: the first four characters of the plaintext are FROM.

4 'What to hand in

You will hand in a zipped folder FirstIntialLastNameHW?2.zip. The folder will con-
tain a text-processed file giving your written solutions, including the explanation
of your solutions to the programming problems. It will also contain a Python file
FirstInitialLastNameHW?2.py containing all the code you wrote to solve problems
6 and 7. Part of the code should contain the two functions with names prescribed
as below.

You should structure your solutions to 6 and 7 in the following way: The so-
lution to 6(a) will contain a function rc4_iv_decrypt (key, ciphertext)
that takes as input the shared key, and a ciphertext with a 24-bit IV prepended, and
returns the plaintext that was encrypted with a combination of the IV and ky. You
can call the RC4 code that was supplied. (This problem is very easy, once you
understand what it is saying.)

For Problem 6(b), supply a function £ind_key6 (ct) that searches for the
correct key value to decrypt the ciphertext ct and returns it as a result. So the

return value will be a string like # 1485546517 and not the recovered plaintext.
You will of course use this to recover the plaintext, so there will be more functions,
which we won’t test for grading.

The solution to Problem 7 will likewise contain a function find_key7 (ct)
that returns the hex representation of the low order 16 bits of the state immediately
after the initial state of the generator. Once again, there will be more code that uses
this value to obtain the decryption of the ciphertext, but this is the function that we
will test. In your writeups for 6 and 7, you will give the recovered plaintext, and
explain how your solutions work—that is, what is the strategy that you followed to
find the key: how many values did you need to test, how could you determine if
the guessed value was the correct one?

