
CSCI3381-Cryptography

Project 3: Padding Oracle Attack on CBC-encrypted Messages

September 25, 2014

A ‘chosen-ciphertext attack’ does not at first glance appear to make much
sense. If you really had ‘temporary access to the decryption mechanism’, as the
textbooks write, why not just give it the ciphertext you’re interested in decrypt-
ing and be done with it? There is, however, a realistic scenario where such an
attack can be effective: Imagine a server accepts enrypted communications. Of
course it does not respond with the plaintext when it decrypts, but let’s suppose
that when it discovers an incorrectly-formatted plaintext, it responds with an er-
ror message, something like ‘This transaction could not be processed.’ Thus the
server deliberately leaks information about the plaintext given the ciphertext.

Now imagine an attacker, in possession of intercepted ciphertext, repeatedly
alters this ciphertext and collects information about when the altered ciphertext is
the encryption of a correctly-formatted message. Is it possible to use this to obtain
a decryption of the original ciphertext? of the key?

Amazingly, the answer is ‘yes’ for some real-life implementations of cryp-
tographic protocols. The attack described in the project, discovered by Serge
Vaudenay, works against block cipher encryption in CBC mode using a standard
method of padding plaintext. This succeeds in recovering the plaintext message,
although it does not reveal the key. A later project works against RSA public-key
encryption and actually recovers the key.

1 The Details

1.1 PKCS #5 Padding Scheme
If a plaintext message to be encrypted with, say, DES, consists of b bytes, and
b is not a multiple of 8, the message must be padded to fill out a whole number

1

of blocks. The obvious thing to do is to just fill out the remainder of the block
with 0’s. The problem with this scheme is that the recipient may be unable to tell
whether a 0 byte occurring near the end of the plaintext is part of the message,
or part of the padding. A better solution, described in a standards document, is
to use the padding to communicate where the boundary between the message and
the pad is. Here is how we can do this: If the message is 20 bytes long, then we
need to add four bytes to fill out the second block. The four bytes that are added
are:

04 04 04 04

that is, four copies of the number four. The recipient, upon decrypting this mes-
sage, sees that the last byte of plaintext is four, and strips off the last four bytes to
recover the intended plaintext message.

In the special case where the number b of plaintext bytes actually is a multiple
of 8, we still need to pad the message. This time we add an entire block of copies
of 8—in hex this is

08 08 08 08 08 08 08 08

1.2 Tweaking the ciphertext to extract information from the
padding oracle

Our server accepts CBC-encrypted messages padded according to this scheme.
Of course it does not tell us the decryptions of the ciphertexts it sees, but it checks
for correct padding: In other words, if it sees that the last byte of plaintext is 03,
it will make sure that there are at least three repetitions of 03 at the end of the
plaintext. Otherwise, it responds with an error message. In this respect, the server
acts as a ‘padding oracle’.

Now suppose we have a block of ciphertext C and we’re interested in finding
DK(C). We create a random 8-byte block

R = r7r6 · · · r0

and submit the two-block message R||C to our padding oracle. (We may need
to submit an IV as well.) Since CBC mode is being used, the padding oracle is
telling us whether the block

R⊕DK(C)

2

is correctly padded. Observe that any block ending in the byte 01 is correctly
padded, so more than 1/256 choices for R will elicit a ‘yes’ answer. This means
that we will not have to try out a lot of values. Moreover, 01 is by far the likeliest
pad to give a correct padding, so with high confidence, we can guess that the
low-order byte of DK(C) is

r0 ⊕ 01.

The one bit of information given away by the padding oracle has allowed us to
decrypt one byte!

I’ll leave you to think about how to handle the relatively rare instance where
R⊕DK(C) is correctly padded, but the low-order byte is something different, say
02.

Once we’ve established the low-order byte, we can build on this information
to determine the next byte, then the next, etc. Each sweep requires 256 queries to
the oracle in the worst case, although about half this on average. After eight such
sweeps, we will have obtained the complete decryption DK(C).

The complete attack is described in Vaudenay’s original paper (not hard to
read the part describing the attack), which you can get at

http://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf
It may seem far-fetched, but there are real systems vulnerable to this attack.

See the paper by Rizzo and Duong at
https://www.usenix.org/legacy/event/woot10/tech/full papers/Rizzo.pdf

2 Deliverables
You will need a working version of DES in CBC mode to experiment with. I
suggest you install the pycrypto package. You can use this to create your own
padding oracle. The oracle should return only the single bit of information that
the plaintext is correctly/incorrectly padded. Your attack code should have access
only to this, not to the key or the decryption. Write a program that takes a block of
ciphertext and decrypts it by using the padding oracle. Then build on this to write
a program that decrypts and entire CBC-encrypted message. Your project should
include your code, along with a brief report on the problem, your approach, the
results you obtained, and how to run your program. I will also ask you to demon-
strate a working version. I may provide you with a padding oracle whose code
you cannot see and ask you to decrypt messages of my choice. (As project topics
go, this is not a difficult one; once you understand the attack, the implementation
can be done with no more than 100 lines of code.)

3

