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On one level, this is just a bunch of routine calculations to make sure you un-
derstand the number-theoretic concepts and algorithms we’ve been talking about
for the past week or two. When you’ve finished, we’ll talk about what this has to
do with cryptography.

You can and should use a computer or a calculator, but, with the exception of
the last question, use it only to compute products, quotients and remainders, and
sequence the higher-level calculations by hand (this applies especially to Problems
4 and 6, where there is something more to do than just multiply and divide.) This
is to make sure that you understand all the underlying algorithms in detail.
1. Set p = 43, q = 59. (These, of course, are primes.) Compute pq. Call this value
N.

2. Compute (p− 1)(q − 1). Call this value m.

3. Find the smallest odd positive integer e > 1 such that gcd(e,m) = 1. You can
really do this by simple inspection, testing e = 3, 5, . . . , in turn, without having
to resort to Euclid’s algorithm. (This is because you know small factors of m.)

4. Find d = e−1 mod m. We know this exists because e was chosen relatively
prime to m. (You have to use the extended Euclid algorithm for this, but it’s espe-
cially easy in this case.)

5. Pick an integer P between 0 and N − 1. Try to ‘act random’ when you pick it.

6. Compute C = P e mod N. Do not use the built-in pow function in Python for
this. Instead, write out all the multiplications and divisions you have to perform
to compute this by repeated squaring (there should be three multiplications and
three divisions).
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7. Now compute Cd mod N. Since d is rather large, this will be tedious to com-
pute by hand, so you can use the pow function in Python. But try to estimate the
number of multiplications and divisions the repeated squaring algorithm performs
to evaluate this. Compare your result to the number you chose in 5. If they’re not
equal, go back and check your work.
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