
Problem Set 4

CS381-Cryptography

Due October 14, 2014

One hundred points is a ‘perfect’ paper, but there are 140 points worth of problems.
By the way, the last programming problem is a completely cookbook calculation, but
it’s something everyone in the class should be completely familiar with. The large point
value is intended as an enticement to work on it.

1 Written Problems

1.1 Routine problems
1. (10 points each) Do problems 1,5,10,12 from Section 3.13 of the text. Show your
work carefully and explain how you get your conclusions (you may cite any theorem
we stated in class). You can use a calculator or a computer to do the arithmetic, but you
should note that all of the arithmetic can be done by hand, and you should show your
calculations at this level of detail.

Solution: Problem 1. This problem (both parts) is solved by applying the extended
Euclid algorithm to 17 and 101. Here it is:

101 = 5× 17 + 16, 16 = −5× 17 + 1× 101,

17 = 1× 16 + 1, 1 = 6× 17− 1× 101.

This is an answer to part (a). We also get as an immediate consequence the solution to
part (b):

17−1 mod 101 = 6.

Solution: Problem 5. The computation of the gcd is done through Euclid’s algorithm:

4883 = 4369 + 514

4369 = 8× 514 = 257

514 = 2× 257 + 0.

So gcd(4883, 4369) = 257. Dividing 257 into each of these values gives

4369 = 17× 257, 4883 = 19× 257.
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A quick check (division by primes up to 17) shows that 257 is prime, so these are
the prime factorizations.

Solution: Problem 10. The problem asks us to solve the simultaneous congruences

x ≡ 1 (mod 3)

x ≡ 2 (mod 4)

x ≡ 3 (mod 5).

The Chinese Remainder Theorem guarantees a unique solution between 0 and 59 in-
clusive (because 3 × 4 × 5 = 60). We can use the explicit formula for solving these
systems (given in class, and also in Problem 24), but here the numbers are small enough
to let us use trial and error: The second congruence says the number has to be even,
and the third then implies that the last decimal digit must be 8. So the solution is ei-
ther 8,18,28,...,58. Since 58 is the only one of these that leaves a remainder of 1 upon
division by 3, that is the smallest solution.

The next smallest solution is 58 + 60 = 118.

Solution: Problem 12. 101 is prime, so by Fermat’s Theorem,

2100 ≡ 1 (mod 101).

Thus
210203 = (2100)102 · 23 ≡ 1102 · 23 ≡ 8 (mod 101).

1.2 More involved problems
(30 points) 2. Fibonacci numbers as worst case for Euclid’s Algorithm. In class we
showed that Euclid’s Algorithm is easy: Applied to integers of size N it requires no
more than 2 log2 N divisions. The Fibonacci numbers, as you probably know, are
defined by starting from F0 = 0, F1 = 1, and defining Fn+1 = Fn + Fn−1 for n > 1.
This gives the sequence 0,1,1,2,3,5,8,13,21,34,...
(a) Prove that applying Euclid’s Algorithm to (Fn, Fn+1) for n ≥ 3 gives gcd(Fn, Fn+1) =
1 and requires n−2 divisions to reach the last remainder 1. (All these problems asking
for a proof of something involving Fibonacci numbers can be done by mathematical
induction.)
Solution. For the case n = 3, we have Fn = 2 and Fn+1 = 3. Euclid’s Algorithm
gives

3 = 1× 2 + 1,

so the gcd is 1 and n− 2 = 1 division was performed.
Now assume n > 3, and for all 3 ≤ m < n, the claim is satisfied. We have

Fn+1 = 1 · Fn + Fn−1,

and this is the first division performed in Euclid’s Algorithm, since Fn−1 < Fn. The
subsequent steps are just Euclid’s Algorithm applied to the pair (Fn−1, Fn). By the
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inductive hypothesis, this terminates after n−1−2 = n−3 subsequent divisions with
a remainder of 1. So in total, n2 divisions are performed, and the gcd is 1.
(b) Suppose that 1 ≤ m < n are integers with gcd(m,n) = 1, and that Euclid’s
algorithm applied to m and n reaches the last nonzero remainder in k steps. Prove
that n ≥ Fk+3. Combined with (a), this shows that the Fibonacci numbers are the
worst case for Euclid’s algorithm. (Induct on k. The induction starts with k = 0, when
Euclid’s algorithm requires no divisions. This forces m = 1, and hence n ≥ 2 = F3.
You will also have to consider the case k = 1 separately before you do the inductive
step.)
Solution. We demonstrated the case k = 0 above. If k = 1, then Euclid’s algorithm
requires 1 division to reach a remainder of 1. This means 2 ≤ m < n, so n ≥ 3 =
F4 = Fk+3, so the theorem holds in this case as well. Now assume k > 1, and that the
claim holds for all 0 ≤ k′ < k. We write

n = q ·m+ r.

Euclid’s algorithm applied to (r,m) requires k − 1 steps, and thus m ≥ Fk+2. The
remainder r′ from this division is at least 1, so 1 ≤ r′ < r, thus the inductive hypothesis
again applies: Since Euclid’s algorithm applied to (r′, r) requires k − 2 steps and thus
r ≥ Fk+1. We now have

n = q ·m+ r ≥ m+ r ≥ Fk+2 + Fk+1 = Fk+3,

as required.

(c) Show that Fk ≥ 1.6k−2 for k ≥ 2. Use this and parts (a,b) to prove that the number
of divisions in Euclid’s algorithm required to compute gcd(m,n) with m < n is no
more than 5 · log10 n.

Solution. For k = 2 we have Fk = 1 = 1.60 = 1.62−2. For k = 3, F3 = 2 > 1.6 =
1.63− 2. For the inductive step, assume k > 3 and that the claim holds for all k′ with
2 ≤ k′ < k. Application of the inductive hypothesis gives

Fk = Fk−1 + Fk−2

≥ 1.6k−3 + 1.6k − 4

= 1.6k−4 × (1.6 + 1)

> 1.6k−4 × 2.56

= 1.6k−4 × 1.62

= 1.6k−2

This establishes the first part of the claim. Now suppose that Euclid’s algorithm
applied to m,n with m < n requires k steps. By the result of part (b) and the above
inequality.we have

n ≥ Fk+3 > 1.6k+1.

Taking base 10 logarithms of both sides

log10 n > (k + 1) · log10 1.6 > (k + 1) · 0.2,
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so
k < k + 1 < 5 · log10 n.
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