
Problem Set 7–Hash Functions

CSCI3381-Cryptography

Due November 21, 2014

All these problems use reduced versions of the hash function SHA-1. To find the
hash value of a string s, you can execute the following Python code:

import hashlib
hashval=hashlib.sha1(s).hexdigest()

The result is a string of 40 hex digits. If you want to extract the first n bits, where
n = 4m, then you can just write hashval[:m]. We will consider reduced versions
of SHA-1 in which n = 20 and n = 40.

Your finished homework should contain the following elements:

• A file hw7.py containing all the functions described in the problems, with ex-
actly the same parameter lists. It is perfectly all right to have additional functions
in this file, especially for the last problem, but the end result should be computed
by a function of the prescribed form.

• A text-processed document containing the solutions you found for each of the
problems. All solutions should very briefly discuss how the complexity of the
solution (the number of hashes) compares with the statistical predicitions.

1 Hashcash tags
(a) Write a function:

compute_tag(s)

where the argument s is a string, and the return value is a tuple (t,m). The compo-
nent t should be a string formed by appending up to 16 hex digits to s. For example,
if s is:

Boston College

then t might look like

Boston College70878594372e29fa

or

1



Boston College4d6082044a0f587a

The string t should also satisfy the following property: The SHA-1 hash of t should
have its high-order 20 bits (i.e., its 5 leading hex digits) all equal to 0. The component
m should be the number of calls to the hash function. Incidentally, both the strings
shown above in the examples have the required property.

A reasonable strategy for this problem is to generate random integers in the range
0 to 264 − 1, convert them to hex using the hex function, and strip away the leading
‘0x’ and the trailing ‘L’. Eventually you’ll find a hex string that works.

(b) Use your result in (a) to compute two different legitimate hashcash headers associ-
ated with today’s date and YOUR e-mail address. The tag should have the format

0:dddddd:youraddress@bc.edu:xxxxxxxxxxxxxxxx

where dddddd is the date in format [2-digit year,month, day] (for instance 141112 for
November 12, 2014), and the x are hex digits.

2 Basic birthday attack on a 40-bit hash
Write a function birthday1() that returns a tuple (s, t, n), where s and t are dif-
ferent ASCII strings whose SHA-1 hashes have the same high-order 40 bits (same 10
initial hex digits). The last component n of the return value is the number of calls to
SHA-1. Again, you can generate random ASCII strings by converting random integers
to hex. By the theory of these birthday attacks, you will need to compute somewhat
more than 1 million hashes to find this collision with probability greater than 1/2. The
simplest way to do it is to repeatedly generate random strings s and enter the pair

SHA-1(s):s

in a Python dictionary structure. When you find a hash value that’s already in the
dictionary, you’re done. Include two different colliding pairs of strings in your writeup.

3 Low-memory birthday attack on a 40-bit hash
The birthday attack in the preceding problem required a dictionary with 1 million+
items. Implement the Floyd cycle-finding algorithm described in the notes to generate
the same kind of collision using almost no memory. Call the function birthday2().
The return value should have the same format. Note that you will require a larger
number of calls to the hash function, because each step of the initial phase of the
algorithm requires the computation of three hashes:

(xi, x2i) 7→ (h(xi), h(h(x2i)) = (xi+1, x2(i+1)),

and each step of the second phase requires the computation of two hashes. Using dif-
ferent starting points will give you different collisions. Include two different colliding
pairs of strings in your writeup.

2



4 Birthday attack with a meaningful collision.
Produce a pair of meaningful ASCII texts that will permit Alice to cheat at the coin-
tossing-by-telephone game. Your function birthday3() should again return a triple
(s, t, n) with the SHA-1 hashes of s and t agreeing in the first 40 bits, but this time s
and t will be something like,

I swear on a stack of bibles that the penny I just tossed came up heads.
I, Alice, do affirm that the shiny penny I just tossed landed TAILS!

This version of the birthday attack is described in Section 9.4, in the chapter on digital
signatures, but you don’t need to know about signatures to understand it. The slightly
different math behind it is explained very briefly at the top of page 231. The idea is that
by introducing about 20 choice points in the formation of the first message (e.g., Alice
or no name, affirm or swear, comma or no comma, etc.) you can create 220 variants of
the same message, all saying that the coin came up heads. (Be creative!) Enter these
strings, along with their hashes, into a dictionary. You can similarly create 220 versions
of the tails message and check if the hash of the message is in the dictionary.

The cheat is that Alice tells the common hashed value to Bob before he guesses,
and then gives him the tails message if he guesses heads, and vice-versa.

3


