
Problem Set 6–Diffie-Hellman and the discrete
Log Problem

CSCI3381-Cryptography

Due November 11, 2014

This time you have to do all the problems to get full credit. There are only four,
each worth 25 points.

Let’s recall briefly what the fundamental algorithms are. In the Diffie-Hellman key
agreement protocol, Alice and Bob agree publicly on a large prime p and a primitive el-
ement g mod p. Alice generates a secret value 1 ≤ x < p, and Bob similarly generates
1 ≤ y < p.

Alice sends gx mod p to Bob, and Bob sends gy mod p to Alice. Each of them cou-
ples this information they receive with their secret information to compute the shared
secret gxy mod p.

All our problems concern the variant of Diffie-Hellman called the El Gamal public
key cryptosystem. Here, Alice keeps x as her secret key and published (p, g, gx mod p)
as her public encryption key. Messages are integers m in the range 1 ≤ m < p. To
encrypt this message, Bob generates a random 1 ≤ y < p and sends

(α = gy mod p, β = (gxy ·m) mod p)

to Alice. To decrypt, Alice takes the first component α and her secret value x to com-
pute gxy mod p, then computes its inverse g−xy mod p, and multiplies this by the
second component β of Bob’s message to recover m.

In the problems below, the messages are brief ASCII texts that have been converted,
as usual, into sequences of bytes and then into long integers. In Problems 2-4 you
should convert the decrypted value back into text. All the parameters and messages are
given on the accompanying web page.

Your solution should be a carefully reasoned account of how you solved the
problems, together with the fragments of code you used and the ASCII solutions
to the decryption problems. Now would be an excellent time to put aside those charm-
ing handwritten documents, and photos thereof, and use either LaTeX or the equation
editor in Microsoft Word. You should also include a .py file that contains all the code,
and which, when run, generates all the answers.

1. Verify that p is prime and that g = 5 is a primitive element mod p. You can use
mrpt.py to verify that it is prime. To show that g is a primitive element, you should
verify that p = 2q + 1 for a prime q and verify that gq mod p 6= 1 and g2 mod p 6= 1
(and be able to explain why this shows that g is primitive.

1



2. Alice’s public and private parameters and Bob’s message pair (α1, β2) are given on
the Web page. Decrypt Bob’s message.

3. Bob sends Alice another pair (α2, β2). It is later revealed that the message sent was

Now my charms are all o’erthrown and what strength I have’s mine own.

Subsequently, Eve intercepts yet another message (α2, β3), and notices that it has
the same first component as the previous message. This is because Bob made the fatal
error of reusing his random value y. Decrypt this new message.

4. I did not give you just any old pair (p, g). This is the pair used by the current Discrete
Log recordholder. The website also contains the value α4 = gy mod p whose discrete
log was successfully computed, and the discrete log y itself. Eve intercepts Bob’s
communciation (α4, β4) to Alice, and uses this priceless discrete log information to
decrypt the message.

You are assuming here that the value whose discrete log was known is sent as the
first component of Bob’s message to Alice. What would be the result if this value were
posted as the first component of Alice’s public key?

The moral of problem 3, if you didn’t catch it, is that Bob cannot reuse his secret
value y. The moral of problem 4 is that p must be large enough to beat the best tech-
nology for computing discrete logs. In this example, p has 180 decimal digits, roughly
600 bits. For this reason, 1024 bits is considered an appropriate size.

2


