
Problem Set 5–Security of RSA

CSCI3381-Cryptography

Solutions to the Written Problems

1. Square roots modulo n; 10 points.

(a) 94932 mod 11413 = 1. Check it if you don’t believe me! Why does this prove that
11413 is composite?
Solution. The equation can be rewritten

11413 | 94932 − 1

= (9493− 1) · (9493 + 1)

= 9492 · 9494

A prime number p has the property that if p divides a product mn, then p divides
either m or n. But clearly 11413 cannot be a divisor of either of these numbers that are
smaller than it, so 11413 is not prime.
(b) Use the equation in (a) to factor 11413. It is possible to do this with a computer by
trial division because the numbers are relatively small, but I want you to show the steps
of a computation that can be carried out by hand, or that could be done if the numbers
given in (a) were many, many times larger.
Solution. To continue with the above argument, this means that the factors of 11413
are divided between 9492 and 9494. Thus 11413 has factors in common with each of
these numbers, which we can recover by using Euclid’s Algorithm. Let’s use 9492.
The quotients and remainders for the successive divisions are given below:

>>> divmod(11413,9492)
(1, 1921)
>>> divmod(9492,1921)
(4, 1808)
>>> divmod(1921,1808)
(1, 113)
>>> divmod(1808,113)
(16, 0)

So the gcd is 113. A spot check (division by 3,5,7) shows that 113 is prime, and
one more division gives

11413 = 113× 101.
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If we had applied Euclid’s Algorithm using 9494 instead of 9492 we would have found
the factor 101 first.
(c) Similarly, carry out a calculation that will find the other square roots of 1 modulo
11413. Of course, two of these square roots are 1 and 11412; find another one.
Solution. You can obtain the four square roots are obtained by using the Chinese
Remainder Theorem to solve the four systems of congruences

x ≡ ±1 (mod 113)

x ≡ ±1 (mod 101)

When the two remainders are both 1 we get 1 as the solution, and when they are both
-1 we get −1 ≡ 11412. You can perform the calculation with the CRT to find out the
solution when one of the remainders is 1 and the other -1. But I already gave you one
of these answers in (a)! It’s 9493. The fourth square root is

−9493 mod 11413 = 1920.

2. Easy factorization if p, q are too close together: 20 points This problem forms the
theoretical basis for one of the computer problems below. (You do not need to prove
the result here in order to tackle the computer problem, you can just accept it and apply
the given algorithm.)

Suppose Alice decides to use primes of more than 200 decimal digits (i.e., greater
than 10200) to generate her RSA modulus. She picks a prime p at random, and then
chooses q to agree with p in all but the last 100 digits. Her reasoning is that p and q
have effectively been randomly sampled from a set of size 10100, and that it will be just
as hard for an adversary to factor N = pq as it would be to factor the product of two
random 100-digit primes.

But Alice is in for a nasty surprise: If we have a factorization n = pq, then we can
write the two primes as A−x and A+x, where A = (p+ q)/2 is the average of p and
q. Thus

N = pq = (A− x)(A+ x) = A2 − x2,

so
x =

√
A2 −N.

If we knew what A was, then since computing exact square roots is easy, we could de-
termine x and hence the factors p and q. But how can we determine A without knowing
p and q in the first place? Prove that in the circumstances described above, A = d

√
Ne,

the smallest integer greater than
√
N. Thus we can factor N by solving the easy prob-

lem of computing the square root, which gives us A, and then x and the prime factors
A± x.

HINT. The ‘circumstances described above’ are that p and q differ by less than
4
√
N. You need to prove that in this case

√
N =

√
pq < A =

p+ q

2
<
√
N + 1.

It’s easiest to do this if you look at what you get by squaring all parts of the inequality.
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Solution.
We get

√
N < A by definition, so we really only need to show that A <

√
N + 1,

or equivalently, that

A2 < (
√
N + 1)2 = N + 2

√
N + 1.

We have

A2 =

(
p+ q

2

)2

=
p2 + 2pq + q2

4

=
p2 − 2pq + q2

4
+

4pq

4

=

(
p− q

2

)2

+N

= N +

( 4
√
N

2

)2

= N +
√
N/4

< N + 2
√
N + 1.

In the specific instance described in the problem, |p−q| < 10100 and N = pq > 10400,
so we do indeed have |p− q| < 4

√
N. As you can see from the proof, we have a lot of

room to maneuver here; it would have been enough to have p and q differ by less than
8 · 4
√
N.
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