
Problem Set 4

CS381-Cryptography

Due October 14, 2014

One hundred points is a ‘perfect’ paper, but there are 140 points worth of problems.
By the way, the last programming problem is a completely cookbook calculation, but
it’s something everyone in the class should be completely familiar with. The large point
value is intended as an enticement to work on it.

1 Written Problems

1.1 Routine problems
1. (10 points each) Do problems 1,5,10,12 from Section 3.13 of the text. Show your
work carefully and explain how you get your conclusions (you may cite any theorem
we stated in class). You can use a calculator or a computer to do the arithmetic, but you
should note that all of the arithmetic can be done by hand, and you should show your
calculations at this level of detail.

1.2 More involved problems
(30 points) 2. Fibonacci numbers as worst case for Euclid’s Algorithm. In class we
showed that Euclid’s Algorithm is easy: Applied to integers of size N it requires no
more than 2 log2 N divisions. The Fibonacci numbers, as you probably know, are
defined by starting from F0 = 0, F1 = 1, and defining Fn+1 = Fn + Fn−1 for n > 1.
This gives the sequence 0,1,1,2,3,5,8,13,21,34,...
(a) Prove that applying Euclid’s Algorithm to (Fn, Fn+1) for n ≥ 3 gives gcd(Fn, Fn+1) =
1 and requires n−2 divisions to reach the last remainder 1. (All these problems asking
for a proof of something involving Fibonacci numbers can be done by mathematical
induction. The base case here is n = 3.)
(b) Suppose that 1 ≤ m < n are integers with gcd(m,n) = 1, and that Euclid’s
algorithm applied to m and n reaches the last nonzero remainder in k steps. Prove
that n ≥ Fk+3. Combined with (a), this shows that the Fibonacci numbers are the
worst case for Euclid’s algorithm. (Induct on k. The induction starts with k = 0, when
Euclid’s algorithm requires no divisions. This forces m = 1, and hence n ≥ 2 = F3.
You will also have to consider the case k = 1 separately before you do the inductive
step.)

1



(c) Show that Fk ≥ 1.6k−2 for k ≥ 2. Use this and parts (a,b) to prove that the number
of divisions in Euclid’s algorithm required to compute gcd(m,n) with m < n is no
more than 5 · log10 n.

2 Computer Problems–20 points each for 1 and 2, 30
points for 3.

1. Experimental verification of prime number theorem. Randomly select ten thousand
integers between 1 and N, where N is large (20, 50, 100 decimal digits) and use the
supplied code for the Miller-Rabin primality test to test if the sampled number is prime.
Count how many primes are found. Compare the result with the what is predicted by
the Prime Number Theorem, which tells us that the number of primes less than N is
approximately

N

lnN
.

What do you find?
To be more precise, you should write a function

def prime_census(threshold)

where threshold is the upper limit of the range of numbers you are testing. (For
example 1020, 1050, and the like.) Your function should return a pair (c1, c2), where
c1 is the actual number of primes found, and c2 is the number predicted by the Prime
Number Theorem. (Remember that c2 depends on both the likelihood of finding a
prime in the given range, and the number of samples we take.)

2. How good is Fermat’s theorem as a primality test? Another random experiment.
Pick ten thousand integers n less than a certain threshold, as above, test for primality
with the Miller-Rabin test, and then apply the following test to n: Choose a random
2 ≤ a < n, and accept n as a likely prime if

an−1 ≡ 1 (mod n).

It’s safe to assume that, as implemented, Miller-Rabin is always right. There is a
possibility that our simple Fermat test will say yes when Miller-Rabin says no; that is,
that our test will accept a composite number as prime. To see how often this happens,
write a function:

def fermat_vs_mr(threshold)

that carries out this experiment, and returns the number of errors—that is, the number
of values erroneously labeled as prime by the Fermat test. Run this for threshold values
of 106, 1010, 1020, 1050, and 10100. What do you find?

3. Walk through RSA algorithm.

2



(a) Write your 8-digit Eagle ID number. Then write it in reverse. (This will be an
integer with 7 or 8 decimal digits) Denote these two integers by k1 and k2. Use the
primality testing code provided to find the smallest prime p ≥ k1 and the smallest
prime q ≥ k2. Use these primes to generate an RSA key pair (N = pq, e) and (N, d),
where e is the smallest integer such that gcd(e, (p− 1)(q− 1)) = 1. Show all the steps
of your calculation—you will use the supplied Python code for this.
(b) Now look at the list of pairs of integers posted on the website and find your modulus
among the first components. The second component of this pair is the encryption of
a randomly-chosen six-letter string, encrypted with your public key. Decrypt it and
report what you found.

3


