
Assignment 3: Block Ciphers

CSCI3381-Cryptography

Due October 3, 2014

1 Solutions to the Written Problems
1. Block Cipher Modes of Operation 6 points per part, 30 total. Parts (a)-(d) refer to
the cipherblock chaining mode (CBC), and part (e) is about a variant. These problems
do not depend at all on the specific block cipher used. Explain your answers carefully.

(a) Suppose a message of 100 plaintext blocks is being encrypted with CBC mode.
Suppose that, prior to encryption, one bit of the tenth plaintext block is inadvertently
changed. How many blocks of plaintext, after decryption, are certain to be correct?

(b) Same setup as part (a), but this time, one bit of the tenth ciphertext block is changed
after encryption but before decryption. How many blocks of plaintext, after decryption,
are certain to be correct?

(c) Same set up as (b), but this time the tenth and eleventh ciphertext blocks are
swapped before decryption.

Solution for parts (a)-(c) The first three questions can all be answered by keeping in
mind that on encryption, the ith ciphertext block depends on all the preceding plaintext
blocks, but on decryption, the ith plaintext block depends only on ciphertext blocks i
and i− 1. The details:

We have
Ci = EK(Pi ⊕ Ci−1)

for all i ≥ 0 (treating the IV as cipher block 0), and thus

Pi = DK(Ci)⊕ Ci−1.

Part (a): If Pi is unchanged for i < 10, but P10 is changed in a single bit, then P10⊕C9

will be also change one bit, and C10 = EK(P10 ⊕ C9) will be completely garbled, as
will all subsequent ciphertext blocks. BUT, we have correctly encrypted the sequence

P1, P2, . . . , P
′
10, P11, . . . P100,

where P ′10 denotes the altered tenth block, so that upon decryption 99 blocks of plain-
text will still be correct.
Part(b): Changing one bit of C10 causes DK(C10) to be completely garbled, and thus
P10 = DK(C10)⊕C9 will also be garbled. DK(C11), however, will be the same, and

1



thus P11 will change in only one bit. Thereafter, all subsequent plaintext blocks will
be correct. So 98 blocks of plaintext will still be correct.
Part (c): works just like Part (b): changing cipher block 10 will alter blocks 10 and 11
of plaintext, and then changing block 11 will further alter block 11 and block 12. So
we should expect no more than three blocks of plaintext to change. Is there anything
in the fact that these blocks are switched that will affect the result? We have, in the
original version:

P10 = DK(C10)⊕ C9, P11 = DK(C11)⊕ C10, P12 = DK(C12)⊕ C11.

But as a result of the switch, we instead will get

P10 = DK(C11)⊕ C9, P11 = DK(C10)⊕ C11, P12 = DK(C12)⊕ C10.

There’s no reason to conclude that any of these three blocks is unchanged as a result of
the swap. So 97 blocks will be correct.

(d) Suppose we encrypt two multi-block messages with CBC mode but use the same
IV each time. What information about the plaintext is leaked by the ciphertext? (You
also might try to imagine a scenario in which this information is useful to an attacker.)

Solution. Let P1, P
′
1, C1, C

′
1 denote the first plaintext and ciphertext blocks of the two

messages. With the IV unchanged, we have

C1 = EK(IV ⊕ P1), C
′
1 = EK(IV ⊕ P ′1).

It follows that P1 = P ′1 if and only if C1 = C ′1. The attacker can thus tell whether or
not two different messages begin with identical first blocks.

(e) Here is a variant of CBC mode called ‘Infinite Garble Extension’ (I don’t know
why!) As usual, the plaintext blocks are denoted P1, P2, . . . , the ciphertext blocks
C1, C2, . . . , and an initialization vector block IV. The encryption algorithm is given
by

C1 = EK(P1)⊕ IV,

Ci = EK(Pi ⊕ Ci−1)⊕ Pi−1.

Write analogous equations defining the decryption operation.

Solution. We just do some ⊕ algebra to solve the two equations:

P1 = DK(C1 ⊕ IV ),

Pi = DK(Ci ⊕ Pi−1)⊕ Ci−1.

In other words, you need both the current ciphertext block, the preceding ciphertext
block, and the preceding plaintext block to recover the present plaintext block. This
means that decryption of the blocks has to be done in first-to-last order, in contrast to
CBC, where the cipher blocks can be decrypted in any order.

2. Modifications to Substiution-Permutation Networks. Point values: 7,8,10; 25
total. This problem is about the internal structure of block ciphers. The model here is

2



the generic substitution-permutation network described in the notes. (While you don’t
need to explicitly consider AES in this problem, you should be aware that conclusions
also apply to AES, where the mixing permutation is replaced by multiplication by an
invertible matrix. Problem 4 of Chapter 5 is relevant to part (c) below. )

(a) Suppose our encryption algorithm uses only one round of the SP network. Explain
how we can completely decrypt any block given a single known plaintext-ciphertext
pair of blocks. Describe the procedure in detail. Does this attack recover the key?

Solution. Let’s write each round of the encryption algorithm as

Y = π(S(X ⊕K)),

where X is the input block to the round, Y the output, K the round key, π the mixing
permutation, and S the map you get from applying the S-boxes in parallel to the seg-
ments of a block. In the case of only one round, this is the entire encryption algorithm.
Now remember that π and S are known to the attacker, and since these are maps given
by small tables, the attacker can easily compute the inverse maps π−1 and S−1. You
then get

K = S−1(π−1(Y ))⊕X,
so that the attacker recovers the key K from a single know plaintext-ciphertext pair.

(b)Suppose that instead of alternating AddKey, Sub, and Mix in the r rounds of our
substitution cipher, we do all r rounds of AddKey, then all r rounds of substitution,
then all r rounds of the mixing permutation, in that order. Show that if we have a
single known plaintext-ciphertext pair of blocks, we can decrypt any block. Does this
attack recover the key?

Solution. Let’s keep the same notation, but run it for three rounds, without alternation.
(There’s nothing special about three rounds—once you see this solution you will see
how it works for any number of rounds.)

Y = π(π(π(S(S(S(X ⊕K1 ⊕K2 ⊕K3)))))).

The solution is the same as above, applying all the inverse maps and XOR ing to re-
cover, not the original key, but the exclusive or K1 ⊕ K2 ⊕ K3 of the round keys.
But this XOR is all you need to encrypt and decrypt messages, so knowing a single
plaintext-ciphertext pair breaks the cipher.

(c) Suppose we got rid of the S-boxes, and just retained the AddKey and Mix phases
of each round. Show how, given a single known plaintext-ciphertext pair of blocks, we
can decrypt any other block of ciphertext. HINT: Show that this forces

EK(M1)⊕ EK(M2) = π(M1 ⊕M2),

where π is some permutation of the bits, for any two plaintext blocks M1 and M2.
Does this attack recover the key?

Solution. Again we’ll keep the notation above, and to be concrete consider three
rounds. The encryption algorithm is now

EK(M) = π(K3 ⊕ π(K2 ⊕ π(K1 ⊕X))).

3



The point is that any permutation like the mixing permutation π is linear—that is, it
satisfies π(X1 ⊕X2) = π(X1)⊕ π(X2). So

EK(M) = π(K3)⊕ π(π(K2))⊕ π(π(π(K1)))⊕ π(π(π(M))).

If we let π′ = π ◦ π ◦ π we get the result above, that

EK(M1)⊕ EK(M2) = π′(M1)⊕ π′(M2) = π′(M1 ⊕M2).

Thus if we know M1 and EK(M1), and intercept the ciphertext EK(M2), we can
compute π′(M1) ⊕ π′(M2). Since we know π′, we can compute π′(M1) and thus get
π′(M2). Finally, we invert this permutation to get M2. We can thus decrypt any block
once we know the single pair (M1, EK(M1)). This attack reveals nothing about the
key.

3. Block Cipher Statistics. 9 points per part; 45 total. An obvious requirement of
cryptographic systems is that if you have two different plaintexts M1 6= M2 and en-
crypt them under the same keyK, then the ciphertexts have to be different: EK(M1) 6=
EK(M2). However, if you encrypt the same plaintext M under two different keys
K1 6= K2, it is entirely possible that EK1(M) = EK2(M). This was important in
figuring out how many known plaintext-ciphertext pairs we would need to successfully
mount a brute-force attack, or a meet-in-the-middle attack against double encryption.

In this problem you will study the statistics of such ‘collisions’. Some pointers
to relevant probability tools that you may have forgotten are given in each part. In
general, use k to represent the number of bits in the key, m to denote the number bits
in a block, and then use your general answers to obtain specific numbers for DES, AES,
and BabyBlock.
(a). Fix a plaintext blockM and a candidate ciphertext blockM ′.What is the probabil-
ity that there is no keyK such thatE(K,M) =M ′? HINT: Choosing one random key
and encrypting M under it to see if you get M ′ is , or should be, the same as choosing
a random block and seeing if you get M ′. Then think of multiple independent trials of
this experiment.

Solution for (a) and (b). If we fix K, the probability of hitting M ′ is 2−m, so the
probability of missing M ′ is 1− 2−m. The probability of missing M ′ with with all 2k

keys is consequently
(1− 2−m)2

k

.

For BabyBlock we have 2m = 2k = 216 = 65536.
(b) Use the result of (a) to estimate, for each M, the number of ciphertext blocks that
cannot be gotten by encryptingM.Do this for each of our three example block ciphers.
What does this tell you about the likelihood of colliding keys for a given plaintext M,
at least in the case of AES and the Baby Block cipher? (HINT: It is very helpful to
know that (1− 1/n)n is close to e−1 for large n, and that more generally 1− x is well
approximated by e−x for x close to 0. This problem might give a rather inconclusive
result for DES unless you are really clever about it.)

Solution for (a) and (b). If we fix K, the probability of hitting M ′ is 2−m, so the
probability of missing M ′ is 1− 2−m. The probability of missing M ′ with with all 2k

4



keys is consequently
(1− 2−m)2

k

.

For BabyBlock we have 2m = 2k = 216 = 65536. For AES it is 2m = 2k = 2128 and
for DES 2m = 264 and 2k = 256.

We can use the approximation suggested in (b) to conclude that the probability of
missing a block M ′ when encrypting M is about 1/e ≈ 0.368, so roughly 37% of
the 65536 blocks cannot be reached by encrypting a single plaintext block M, and a
similar proportion for the AES blocks.

For DES the probability is (1 − 2−64)2
56 ≈ e−2

−8

, according to the above ap-
proximation, which is about 0.996. Thus about 99.6% of the 264 blocks are not the
decryption of a given plaintext M.

(c) This is an extension of parts (a) and (b) above. Estimate the number of ciphertext
blocks M ′ such that exactly one key maps M to M ′, exactly two keys, etc. (HINT:
This uses the Poisson distribution.)

Let p = 2−m be the probability that a given block M ′ is hit by a single ‘shot’—
here a shot is the encryption of a fixed plaintext blockM by a randomly chosen key K.
Let n = 2k be the number of shots, and λ = np. Then the probability of being hit by r
shots is about

e−λλr

r!
.

This is the Poisson distribution. In our examples we have λ = 1 for Baby Block and
AES, and λ = 1

256 for DES. For the first two, this gives probabilities for 0, 1, 2, . . . ,
keys, of

1

e
,
1

e
,
1

2e
,
1

6e
,

1

24e
,

etc.
For example, the proportion of ciphertext blocks that M encrypts to under more

than one key is
1− 2/e ≈ 0.264,

so with Baby Block this means there are about 17000 such ciphertexts.
For DES, the probabilities are

0.996, 0.00389, 7.6× 10−6, 9.895× 10−9.

The proportion of ciphertext blocks that M encrypts to under more than one key is

1− 0.996− 0.00389 ≈ 7.6× 10−6,

so the number of such ciphtertexts is quite huge, about

7.6× 10−6 × 264 ≈ 1.4× 1014.

(d) Parts (a)-(c) should tell you that if you pick a plaintext block at random, there are
likely to be many pairs of distinct keys that encrypt it to the same ciphertext block.

5



Suppose I go looking for such a collision, testing keys at random until I discover a
match. About how many keys will I have to test to have better than even odds of
finding a colliding pair? (HINT: Do you know the problem about the chances of two
people in a room having the same birthday?)

Solution. This is the birthday problem: We have 2m different birthdays. We want
to know how many people we have to assemble in a room before the probability of a
shared birthday is more tha 0.5. We will go through a careful solution of this later in
class, but a good rule of thumb is that the number of people is roughly the square root
of the number of possible birthdays, and thus we need to test about 2m/2 keys. For
BabyBlock, for example, this means we need to check approximately 256 keys; for
DES about 232, around 4 billion.

(e) What we’ve been showing is that although the function

M 7→ EK(M)

is one-to-one for each fixed key K, the function

K 7→ EK(M)

for a fixed is block M is almost surely not, at least not if we want our keys to behave
like random permutations of the set of plaintext blocks. This may come as a bit of a
surprise after the one-time pad. Estimate (do this just for AES and BabyBlock) the
probability that this map is one-to-one. (HINT: Stirling’s formula for n!). The answer,
as you might expect after all this, is ‘very small’. But is it very small like one in a
million, or very small like one in a googol, or like one in a googolplex?

Solution. We are in the setting where we have N = 2m blocks and keys, with m = 16
and m = 128. Ideally, the function

K 7→ EK(M)

for fixed M acts like a randomly chosen function from an N -element set to an N -
element set. There are NN such functions, so the probability that a randomly-chosen
function is a permutation is

N !

NN
.

By Stirling’s formula, N ! is about
√
2πN · NN/eN , so the probability that a given

such map is a permutation is
2πN

eN
.

Even for BabyBlock, with N = 216, this is already extremely small, less than one in
a googol. For n = 2128, we’re in googolplex territory: the denominator is too big to
write down, even for a computer.

6


