
Assignment 3: Block Ciphers

CSCI3381-Cryptography

Due October 3, 2014

If you’re concerned about the size of this assignment, rest assured that I don’t expect
you to do all the problems. It’s just that I thought of a zillion interesting ones, tossed out
some of my favorites, but still left a large assortment to provide you with some variety
and choice. A ‘perfect’ score on this assignment is 100 points, and you won’t get more
than 100 for the assignment, but there is a total of 200 points to choose from. Great at
math but struggling with programming? The written problems in the first section will
give you a chance to shine, and you can achieve a perfect score doing just these. Love
to code but a tad mathophobic? You’ll find an assortment of programming challenges,
from the trivial to the sublime. Don’t like math OR programming? Maybe you should
reconsider...

The written problems refer to block ciphers with a variety of parameters: DES
(block size 64 bits, key size 56 bits); AES (block size = key size = 128 bits); and the
baby block cipher I’ve provided (block size = key size = 16 bits). The programming
problems all use the baby block cipher, because the small key size allows you to carry
out some experiments that would be impossible with the industrial-strength versions.
For problems that require you to decrypt an extensive ciphertext, you will receive the
reward of illuminating and entertaining reading on completion of a successful decryp-
tion.

( But it would be nice to be able to use industrial-strength crypto in some of our pro-
gramming work. I have recently installed the package pycrypto and am experimenting
with it. Stay tuned.)

1 Written Problems
1. Block Cipher Modes of Operation 6 points per part, 30 total. Parts (a)-(d) refer to
the cipherblock chaining mode (CBC), and part (e) is about a variant. These problems
do not depend at all on the specific block cipher used. Explain your answers carefully.

(a) Suppose a message of 100 plaintext blocks is being encrypted with CBC mode.
Suppose that, prior to encryption, one bit of the tenth plaintext block is inadvertently
changed. How many blocks of plaintext, after decryption, are certain to be correct?

(b) Same setup as part (a), but this time, one bit of the tenth ciphertext block is changed
after encryption but before decryption. How many blocks of plaintext, after decryption,
are certain to be correct?
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(c) Same set up as (b), but this time the tenth and eleventh ciphertext blocks are
swapped before decryption.
(d) Suppose we encrypt two multi-block messages with CBC mode but use the same
IV each time. What information about the plaintext is leaked by the ciphertext? (You
also might try to imagine a scenario in which this information is useful to an attacker.)

(e) Here is a variant of CBC mode called ‘Infinite Garble Extension’ (I don’t know
why!) As usual, the plaintext blocks are denoted P1, P2, . . . , the ciphertext blocks
C1, C2, . . . , and an initialization vector block IV. The encryption algorithm is given
by

C1 = EK(P1)⊕ IV,

Ci = EK(Pi ⊕ Ci−1)⊕ Pi−1.

Write analogous equations defining the decryption operation.

2. Modifications to Substiution-Permutation Networks. Point values: 7,8,10; 25
total. This problem is about the internal structure of block ciphers. The model here is
the generic substitution-permutation network described in the notes. (While you don’t
need to explicitly consider AES in this problem, you should be aware that conclusions
also apply to AES, where the mixing permutation is replaced by multiplication by an
invertible matrix. Problem 4 of Chapter 5 is relevant to part (c) below. )

(a) Suppose our encryption algorithm uses only one round of the SP network. Explain
how we can completely decrypt any block given a single known plaintext-ciphertext
pair of blocks. Describe the procedure in detail. Does this attack recover the key?

(b)Suppose that instead of alternating AddKey, Sub, and Mix in the r rounds of our
substitution cipher, we do all r rounds of AddKey, then all r rounds of substitution,
then all r rounds of the mixing permutation, in that order. Show that if we have a
single known plaintext-ciphertext pair of blocks, we can decrypt any block. Does this
attack recover the key?

(c) Suppose we got rid of the S-boxes, and just retained the AddKey and Mix phases
of each round. Show how, given a single known plaintext-ciphertext pair of blocks, we
can decrypt any other block of ciphertext. HINT: Show that this forces

EK(M1)⊕ EK(M2) = π(M1 ⊕M2),

where π is some permutation of the bits, for any two plaintext blocks M1 and M2.
Does this attack recover the key?

3. Block Cipher Statistics. 9 points per part; 45 total. An obvious requirement of
cryptographic systems is that if you have two different plaintexts M1 6= M2 and en-
crypt them under the same keyK, then the ciphertexts have to be different: EK(M1) 6=
EK(M2). However, if you encrypt the same plaintext M under two different keys
K1 6= K2, it is entirely possible that EK1

(M) = EK2
(M). This was important in

figuring out how many known plaintext-ciphertext pairs we would need to successfully
mount a brute-force attack, or a meet-in-the-middle attack against double encryption.

2



In this problem you will study the statistics of such ‘collisions’. Some pointers
to relevant probability tools that you may have forgotten are given in each part. In
general, use k to represent the number of bits in the key, m to denote the number bits
in a block, and then use your general answers to obtain specific numbers for DES, AES,
and BabyBlock.
(a). Fix a plaintext blockM and a candidate ciphertext blockM ′.What is the probabil-
ity that there is no keyK such thatE(K,M) =M ′? HINT: Choosing one random key
and encrypting M under it to see if you get M ′ is , or should be, the same as choosing
a random block and seeing if you get M ′. Then think of multiple independent trials of
this experiment.

(b) Use the result of (a) to estimate, for each M, the number of ciphertext blocks that
cannot be gotten by encryptingM.Do this for each of our three example block ciphers.
What does this tell you about the likelihood of colliding keys for a given plaintext M,
at least in the case of AES and the Baby Block cipher? (HINT: It is very helpful to
know that (1− 1/n)n is close to e−1 for large n, and that more generally 1− x is well
approximated by e−x for x close to 0. This problem might give a rather inconclusive
result for DES unless you are really clever about it.)

(c) This is an extension of parts (a) and (b) above. Estimate the number of ciphertext
blocks M ′ such that exactly one key maps M to M ′, exactly two keys, etc. (HINT:
This uses the Poisson distribution.)

(d) Parts (a)-(c) should tell you that if you pick a plaintext block at random, there are
likely to be many pairs of distinct keys that encrypt it to the same ciphertext block.
Suppose I go looking for such a collision, testing keys at random until I discover a
match. About how many keys will I have to test to have better than even odds of
finding a colliding pair? (HINT: Do you know the problem about the chances of two
people in a room having the same birthday?)

(e) What we’ve been showing is that although the function

M 7→ EK(M)

is one-to-one for each fixed key K, the function

K 7→ EK(M)

for a fixed is block M is almost surely not, at least not if we want our keys to behave
like random permutations of the set of plaintext blocks. This may come as a bit of a
surprise after the one-time pad. Estimate (do this just for AES and BabyBlock) the
probability that this map is one-to-one. (HINT: Stirling’s formula for n!). The answer,
as you might expect after all this, is ‘very small’. But is it very small like one in a
million, or very small like one in a googol, or like one in a googolplex?

2 Computer Problems.
Problems 4,5, and 6 (as well as 7 and 9) refer to the base 64-encoded ciphertexts in
the accompanying page on the course website. These were produced by representing
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ASCII texts as sequences of bytes, and encrypting them with the baby block cipher
using different modes of operation. See the accompanying notes for the description of
the cipher, and the code for block encryption and decryption, and for encryption under
the different modes of operation. Your job in each case is to decrypt the ciphertext and
produce the original ASCII plaintext. It may be that the number of bytes in the original
plaintext is odd: when this happens, the plaintext is padded with a 0 byte so that it fills
an entire block. In these cases, the ciphertext will be one byte longer than the plaintext.

ECB Decryption.(8 points) The plaintext for Problem 4 was encrypted using the baby
block cipher in ECB mode with key 12345. Decrypt it. You should write a function
decrypt ecb(key,ciphertext) that takes as parameters an integer key and the
base64-encoding of a ciphertext (in that order) and returns the decryption as an ASCII
string. You should apply your function to the given ciphertext to obtain the result.

5. CBC Decryption.(12 points)The plaintext for Problem 5 was encrypted using the
baby block cipher in CBC mode with key 12345. The first two bytes of the displayed
ciphertext are the initialization vector, and not actual ciphertext. You should write
a function decrypt cbc(key,ciphertext) that takes as parameters an integer
key and the base64 encoding of a ciphertext, whose first two bytes are the IV, and
returns the decryption as an ASCII string. You should apply your function to the given
ciphertext to obtain the result.

6. CTR Decryption.(10 points) The plaintext for Problem 6 was encrypted using
CTR mode with key 12345. The first two bytes of the displayed ciphertext are the
initial value of the counter, and not actual ciphertext. You should write a function
decrypt ctr(key,ciphertext) that takes as parameters an integer key and the
base64 encoding of a ciphertext, whose first two bytes are the the initial value of the
counter, and returns the decryption as an ASCII string. You should apply your function
to the given ciphertext to obtain the result. Remember that in CTR mode, decryption
and encryption are the same.

7. Brute-force Attack.(15 points) The plaintext for this problem was encrypted us-
ing ECB mode. Find the plaintext by trying out all keys. (We would usually do
this with a known-plaintext attack, so I would have to tell you a couple of plaintext
blocks. Instead, I will tell you that the plaintext is ordinary ASCII. Since ASCII bytes
have values in the range 0 to 127 and random bytes range from 0 to 255, there is lit-
tle possibility that more than one key will decrypt the ciphertext to something con-
sisting only of ASCII characters.) You should present your solution as a function
decrypt brute(ciphertext) that takes as a parameter the base64-encrypted
ciphertext. A good strategy is to check the first n characters of plaintext for each
choice of key and see if they are all in the range 0 to 127. You may need to experiment
to find a value of n that is not too large, but that nonetheless leads to a unique key. Your
function should return the plaintext as an ASCII string.

8 Collision Statistics. (15 points) This problem complements Problem 3(c) in the
written section, and it is probably best that you work that problem if you’re going to
do this one.. Write a function collision statistics(M) that takes as input a
plaintext blockM (an integer between 0 and 65535), encrypts it under all possible keys,
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and returns a list or a dictionary telling how many ciphertext blocks are the encryption
of M under exactly 0 keys, 1 key, 2, keys, etc. (You’ll need to go up to about 9 or 10.)
In other words, if the first entry in your table is 21000, it means that there are 21000
blocks M ′ such that there are NO keys K such that E(K,M) = M ′. The next entry
in the table tells how many ciphertexts are mapped to by a unique key, then how many
by exactly two keys, etc.

Execute for various values ofM, and compare to the results predicted by 3(c). This
tells you in some respects how closely the statistics of the cipher resemble what one
would get for a randomly selected permutation.

Now repeat the experiment but restrict the number of rounds to 2, and compare the
results.
9. Meet-in-the-middle Attack (40 points.) The plaintext for this problem was en-
crypted using CBC mode, but the block encryption function is

M 7→ EK1(EK2(M)).

The first four characters of plaintext are ’We h’. Find the plaintext by mounting the
meet-in-the middle attack as described in both the notes and the textbook.
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