
Assignment 2

CSCI3381-Cryptography

Due September 24, 2014

These problems concern the one-time pad, perfect secrecy, and stream ciphers.
For the programming problems, ASCII plaintexts and base 64-encoded ciphertexts are
posted on the website; you should be able to copy them and paste them into your Python
code. Note that for the last problem, which is the most involved one, you have a choice
of which of two versions to solve. You can work on both of them if you like, but I will
only give grade credit for one of them.

1 Written problems

0. Don’t hand this in, but make sure you can compute by hand instances of the
exclusive-or operation, for example 10011011⊕ 01100010.

1. You should be familiar with the operations AND and OR applied to bits. We denote
these by ∧ and ∨, and for example write 1 ∧ 0 = 0, 1 ∨ 0 = 1. We can extend both
these operations to strings of bits of the same length, so, for example,

11001 ∧ 01010 = 01000, 11001 ∨ 01010 = 11011.

(In Python, these bitwise operations are denoted & and |.)
Let u, v, w be bit strings that are all the same length. Is it true in general that

u ∧ (v ⊕ w) = (u ∧ v)⊕ (u ∧ w)

u ∨ (v ⊕ w) = (u ∨ v)⊕ (u ∨ w)

(so there are two different questions here). If the answer is no, give a counterexample.
If the answer is yes, explain why this always holds.

2. Consider the monoalphabetic substitution cipher and where the set of plaintexts is
{a, b, . . . , z}, and the same cipher, but with set of plaintexts {aa, ab, ac, . . . , zx, zy, zz}–
that is, the set of all two-letter strings. (This is different from the context in which we
saw the monoalphabetic substitution cipher before, where we allowed plaintexts of ar-
bitrary length.)

Does either of these systems have perfect secrecy? Give a precise answer—that is,
address the question of whether

Prk∈K[E(k,m1) = c] = Prk∈K[E(k,m2) = c]

1



for all m1,m2 ∈ M and all ciphertexts c. If you conclude that a system does not
have perfect secrecy, you should also describe informally, in words, what kind of in-
formation the ciphertext leaks about the plaintext. (HINT: This problem has nothing
to do with linguistic properties of the plaintext—so you should not use anything about
distribution of letters in English text.)

3. (This is a pencil-and-paper problem, but you can use Python to do the arithmetic
required in part (a).) The first random number generator I saw explicitly described
was in a once-popular textbook called Programming in Pascal, by Peter Grogono. The
generator keeps a 16-bit state and at each update outputs the entire state. The updating
is done by

state← (25173× state+ 13849) (mod 216).

Suppose we use this as the keystream generator for a stream cipher.

(a) Eve intercepts four bytes of ciphertext:

f3 29 b0 36

She has strong reason to believe that the two bytes of plaintext are

00 ff

What are the next two bytes of plaintext?

(b) Alice uses this stream cipher to encrypt a draft of her new novel and send it to
Bob. Explain how Eve can extract some information from the ciphertext even with no
known plaintext. (HINT: What happens if you update the random number generator
many times?)

2 Computer Problems
4. We can use the random number generator in Python as a stream cipher. (But
see Problem 6 below on why you should NEVER do this.) We use an integer, or a
string, or any hashable Python object as a key, and use this key as an argument to
random.seed to initialize the random number generator. For instance,

key=random.seed("Don’t share this secret with anyone!")

We can then construct an n-byte keystream as

keystream=[random.randint(0,255) for j in range(n)]

Some ASCII text was encrypted by this method using the secret key ’Rosebud’.
The resulting ciphertext, as a base 64-encoded string, appears in the examples on the
website. Find the plaintext. This is a matter of typing just a few Python commands.
Include the code you typed to find the solution, along with the answer.

5. Alice Shelley uses a one-time pad to send Bob Keats two encrypted lines of her
poetry. Jealous Eve Byron knows that the lines sent were from this collection of four
lines, but would like to know which two Alice chose to send:

2



I met a traveller from an antique land

And on the pedestal these words appear

My name is Ozymandias---king of kings.

Look on my works ye Mighty and despair

(I took some liberties with the punctuation of the original so that all four lines would
have exactly 38 characters.) Being more of a literature type than a computer type, Alice
did not realize that she was not supposed to use the same key for both messages. Eve
intercepts the ciphertexts

ZCkTVMy6oBNZm9QZTH2zzqU0c+PPVSf2dfoJWO8k391OTCsS5QA=

and

aD5XGsK55UdYjdQmU2C73L8xdqLIEG+oe7MQUL0vyt1EVTUQ91w=

and figures out which two lines Alice sent. Explain how Eve did this, and show all the
calculations that led to the result.

6. Cryptanalysis of poorly-constructed stream ciphers. There are two versions of this
problem; you need to do only one. In both cases you will be given an insecure stream
cipher, the first built from a system random number generator that was not specifically
designed for cryptographic use, and the second from a single LFSR. You will also be
given a few hundred bytes of intercepted ciphertext, and the first several bytes of the
plaintext. You can use these to recover the first few bytes of the keystream. Your job is
then to exploit the weakness in design to predict the rest of the keystream, and recover
the entire plaintext.

(a) One of the posted files contains a Python implementation of the random number
generator in the java.util.Random class of Java. (In case you are wondering, it
would also be possible to do this with Python’s built-in random number generator, but
that is somewhat more involved and requires more known plaintext.) The Java version
is a somewhat old-fashioned linear congruential generator. The generator maintains a
48-bit state. You can initalize this state with a passphrase, using init state (this
just grabs the last 6 characters of the passphrase). The state is updated through a simple
formula

state = (m · state + k) mod 248.

Thus if we know the state at the start, we can easily generate the entire keystream.
The nextInt() method of Java’s Random does not return the entire state, which

would make this job easier, but only the high-order 32 bits of the state. This is imple-
mented in the program provided by the function next byte, which returns a list of 4
bytes.

To generate the rest of the keystream, we need guess the remaining 16 bits of the
state. There are 216 = 65536 different possibilities to try out, so this can be done

3



by brute force: Initialize the state using each of the candidate values, and see if the
choice successfully generates the next few bytes of the keystream. If you manage this,
it means you will have recovered the state of the generator, and can then obtain all
subsequent bytes of the keystream.

For this problem, the plaintext begins

If you

The character after the ‘u’ is a space, so all in all this gives you 7 bytes of plaintext.
The ciphertext in base 64 encoding appears on the web page accompanying this

assignment.

(b) In this alternative version of the problem, the state is much smaller: A 17-bit linear
feedback shift register. The register holds bits

b16b15 · · · b1b0.

At each step, the state is updated to

bb16b15 · · · b2b1,

where
b = b14 ⊕ b0.

Bit b is also the output of the generator.
The functions in the file lfsr.py allow you to initialize the state and get the next

k bytes of output from the generator. Such a keystream, starting from an unknown
initial state, was used to encrypt a passage of ASCII text. The ciphertext is given on
the accompanying web page. The plaintext begins

He

If you include the final space, this gives 3 bytes=24 bits of plaintext. Coupled with the
intercepted ciphertext, you get 24 bits of the keystream. You are to use this informa-
tion to recover the initial state of the generator and thus find the entire keystream and
decrypt the ciphertext.

It is possible to solve this problem by brute force, since there are 217 ≈ 130000
keys to try out. But a more efficient method, which you should use, is to solve the
underlying linear equations to find the initial state of the generator. This can even be
done by hand, given the very simple recurrence for the lfsr. (But having a computer
does help.) Solving requires just 17 successive bits of output

The lfsr described here has maximal period 217 − 1. It is one of two shift registers
that were used in the encryption mechanism in the original Content Scrambling System
used to copy-protect DVDs. (It should be added that this system is not much harder to
break than a single lfsr.)

4


