
CSCI3381-Cryptography

Project 1: Automated Cryptanalysis of Monoalphabetic Substitution Cipher

September 3, 2014

There’s not much in the way of modern cryptography in this project (it prob-
ably has more to do with natural language processing). But the result is very
appealing, especially if you liked the sort of stuff we did in the first week on
classical cryptosystems.

1 The Goal
Write a computer program that will take as input a passage of English text that has
been encrypted with a substitution cipher, and returns the plaintext. Both plaintext
and ciphertext should be without punctuation or capitalization. You can choose to
whether or not to include spaces between words as part of the plaintext. (If you
include spaces, you can find lots of cryptograms in cheap puzzle books and on
line to test your program.)

For example, my solution to this problem (which does not include spacing)
took the following input:

yjbkjzijyyjbkyfeyhgyfkrlkgyhjisfkyfkzyhgijbakzhiyfkwhinyjglddkzyfkgahicgeinezzjsgjdjlyzeckj
lgdjzylikjzyjyexkezwgecehigyegkejdyzjlbakgeinbqjmmjghickinyfkw

The output of the program should be the decrypted plaintext, in this case:

tobeornottobethatisthequestionwhethertisnoblerinthemindtosuffertheslingsandarrowsofout
rageousfortuneortotakearmsagainstaseaoftroublesandbyopposingendthem

(The plaintext is the first few lines of the ‘To be or not to be’ solliloquy from
Hamlet.)

The problem is discussed in Section 2.4 of the text, which gives a somewhat
vague account of how such puzzles can be solved by hand. The general idea is

1



this: Although the set of keys has 26! ≈ 4 × 1026 elements—too large to be
searched on a normal computer—two devastating features make this cipher com-
pletely insecure when only a single ciphertext is known: First, the very skewed
distribution in the frequency of letters, letter pairs, and letter triples in ordinary
English text is still present in the ciphertext. Second, since each symbol of cipher-
text depends on only one small part of the key, making small changes to the key
produces small changes to to the ciphertext, and thus it is possible to gradually
improve the decryption through successive slight modification of the key.

Still, it is not so simple a matter to write a program that exploits these to pro-
duce successful decryptions. The solution method outlined below, which works
pretty well, successfully exploits both sources of insecurity.

2 The Solution Method
We require both a way of scoring how “English-y” a proposed decryption is, and a
method for gradually improving the decryptions by modifying the decryption key.

2.1 Scoring: the n-gram model
When we discussed cryptanalysis of the Vigenère cipher, we used a method for
evaluating how much a text resembled ordinary English, based on the frequency
of individual letters. This works very well when there are relatively few keys to
check, but is not nearly as effective when the key space consists of all possible
permutations of the letters.

Instead of computing frequencies of individual letters or pairs of letters, we
look instead at the frequency of bigrams and trigrams–pairs and triples of letters.
(We can even go higher than this—you may need to do some experimentation to
find the optimal value of n for the n-gram frequencies that you test.) To make
things very concrete, let’s suppose that we are not including spaces in the cipher-
text, as in the example above, and we are working with trigram frequencies. We
ask, given that two successive letters are xy, what is the probability that the next
letter is z? For example, if two successive letters are “pd”, it is highly likely that
the next letter is “a”, “e”,“i”,“o”,“u” or “y”—remember that we are eliminating
word boundaries, so combinations like “tap dance”, “chip dip” and “step down”
are all possible—while any other choice, for instance ‘m’, for the next letter is
highly unlikely. Thus to each three-letter sequence xyz we assign the conditional

2



probability p(xyz|xy) that the third letter of a three-letter sequence is z, given that
the first two letters are xy.

To estimate these probabilities, you will need to process a large training text.
I recommend going someplace like the Project Gutenberg website to download
public domain texts in ASCII format. I used texts of old novels with approxi-
mately 1 to 2 million characters. You need to preprocess the text to eliminate
punctuation, capitalization, and, optionally, spaces.The simplest way to tabulate
the estimated probabilities in Python is to build a dictionary structure in which
each entry is a key-value pair whose key is a two-letter string, and whose value
is a list of the 26 probabilities that the next letter is ’a’,’b’,etc. The elements of
each value list should sum to 1. To estimate the probability p(xyz|xy) we count
the number of occurrences of xyz in the training text and divide by the number
of occurrences of xy. This dictionary will be used by the cryptogram solver to
evaluate how English-y a test text is. If the test text is

a1a2 · · · an,
then the score assigned is the probability

n−2∏
i=1

p(aiai+1ai+2|aiai+1).

Given two sequences of the same length, the one with a better fit to English texts
is the sequence with the higher score.

There are two problems with implementing this approach directly: First, a
very large number of trigrams will not occur at all, and the presence of zeros in
the table means that typical candidate decryptions will have a score of 0: this
makes it impossible to measure our progress. A simple and effective way around
this is to increase the count of every possible trigram by 1, so that none of the
estimated probabilities is 0.

When we make this modification, the score is a positive number, and more
likely strings in this model get higher scores than less likely strings of the same
length, just as we want. But the value

∏n−2
i=1 p(aiai+1ai+2) is going to be very

small, less than 10−1000 for texts of a few hundred characters, and this will produce
floating point underflow. Instead, I suggest you replace this score by the additive
inverse of its logarithm, which is

−
n−2∑
i=1

log(p(aiai+1ai+2)).

These values are positive numbers. Texts with better fit have smaller scores.

3



2.2 Hill-climbing
The algorithm for stepwise improvement of the score is to start with a random
permutation of { ‘a’,‘b’,...‘c’ } as the decryption key and find the score of the
resulting plaintext. In each step, decrypt using a bunch of neighboring keys–these
are obtained by interchanging two elements of the original key—and choosing the
best one, in terms of the score of the resulting decryption, as the next key. There
are 13× 25 = 325 transpositions you can try.

What if you don’t find a neighboring key that gives a better score? Algorithms
like this one are called ‘hill-climbing’ algorithms: Ours always tries to take the
steepest step that it can, to produce the most improvement in one move. But there
is a risk that it will get stuck in a local optimum: you can’t climb any higher in a
single step, but you may be far from the best score possible.

In this case, the algorithm should remember the best solution it has found so
far, but restart with a new random permutation and begin a new probe for a local
optimum. After a few hundred such probes (fewer for longer ciphertexts, more
for shorter ones) the algorithm usually succeeds returns the candidate plaintext
with the best score. My solver, which uses trigrams, came up with the correct
solution to the ‘To be or not to be’ cryptogram, which has 153 characters, after
230 probes. The results will vary, even when the program is run with the identical
input, because of the random restarting of the algorithm on each probe.

3 Issues
For ciphertexts of more than 100 characters this method described works ex-
tremely well, usually producing the correct answer in 200-300 probes. (Each
probe itself examines many keys, but the total number of keys tried out is in the
neighborhood of one million, a very tiny fraction of the entire keyspace.) More
rarely, the algorithm terminates with a plaintext that is almost correct, differing
from the original plaintext by a cycle of three characters, e.g., ‘c’ replaced by ‘q’,
‘q’ by ‘t’, and ‘t’ by ‘c’. In such cases it probably means that any single transpo-
sition worsens the score. So while the proposed answer is very close, this method
is unable reach the correct answer from the proposed one. Is there a way to tweak
the final result to avoid this?

The method as described here fails for shorter texts (around 100 characters). I
observed situations where the algorithm came up with decryptions that had better
scores than the correct one, even though the result looked like gibberish. This

4



means that the mathematical model is not capable of distinguishing a genuine
English text from a scrambled version. I encourage you to devise and experiment
with different strategies for this problem.

You might also try to implement a version where word boundaries in the plain-
text are preserved in the ciphertext—these are the ones that appear in newspapers
and puzzle books, or include both options in your program. Such puzzles are eas-
ier to solve, so it should require fewer iterations and work on shorter texts. The
algorithm is the same, but you will have to process the training data differently,
and the coding might be just a little bit more complciated.

I have implemented this in several languages. Be forewarned: Python is a great
language in which to hack the solution out quickly, but the performance is very
slow. Each hill-climbing probe to find a local optimum took 2-3 seconds with the
‘To be or not to be’ example. I implemented a version in C, which required more
programming effort, but was approximately 100 times faster. I believe much of
the slowdown in Python occurs in the computation of the score for each candidate
decryption, which can probably be speeded up by using the Numpy numerical
package for Python.

4 Deliverables
These should include your code, along with a brief report on the problem, your
approach, the results you obtained, and how to run your program. I will also ask
you to demonstrate a working version.

5


