Digital Signatures

November 30, 2014

This stuff is pretty much all in the textbook, sections 9.1- 9.3.

1 The Basic Idea

A digital signature system is a public-key version of message authentication. Suppose, for
example, that you are concerned that the software you just purchased really was produced
and tested by a reputable source, and has not been altered by the addition of malicious
code. The manufacturer could attach at tag computed by MAC over the binary code, but
this requires that you and the manufacturer share a secret key. You cannot transfer the
software to a third party without exposing the key.

In a digital signature system, the manufacturer uses a secret key for signing the binary
code, and provides a public key for verifying the signature. The system consists of and al-
gorithm for generating public-private key pairs, and two additional algorithms for applying
signatures and verifying them:

sign 1m, Kpriv = OKpriy (m)

verify :m, s, Ky, — {yes, no}.

The algorithms should have the following property: If (Kpuiv, Kpub) is a public-private
key pair, then
verify(m, OK i (m), Kpup) = yes.

However, it should be computationally infeasible for an adversary who does not know the
private key Kpyiy to produce a pair (m, s) such that

verify(m, s, Kpup) = yes,

even if the attacker has seen a lot of other pairs (m/,s’) with m’ # m that satisfy this
property. Such a pair (m,s) constitutes a forgery of the private keyholder’s signature
on m. Thus if the verification algorithm accepts the signature, everyone can be assured
that the m originates with the signer and has not been tampered with. Such a scheme



also provides a property called non-repudiation: In our example scenario, the software
manufacturer should not be able to claim that it did not produce the binary source m,
since everyone can verify the manufacturer’s signature s.

2 RSA Signatures

The first scheme for digital signatures, and still one of the most widely used, is the RSA
algorithm that we saw for public-key encryption. We have the same public-private parame-
ters N, e, and d. The simple version is that the signer signs by ‘encrypting’ with his private
key:

m,d, N — s =m® mod N.

The verifier takes the pair (m,s), together with the public key e, N,computes s mod N
and outputs ‘yes’ if s* mod N = m and ‘no’ otherwise.

However, just as there are problems with the analogous ‘textbook’ version of RSA
encryption, this simple account of RSA signing has some flaws. For one thing, if the
message to be signed is very long (as indeed it will be if we are signing something like
binary source of a large computer program), then we would need to break it into many
blocks and sign each block separately. This results in a very large file, twice as big as the
original program, and it will require a lot of time to verify the signature.

For another thing, this makes it easy to forge a signature, knowing just the signer’s
public key (e, N). Take any value 0 < s < N, and set m = s mod N. Then (m,s) is a
valid signature. The message m is itself gibberish, but this is still a forgery. A variant of
this attack that produces a forged signature on a meaningful message m is the following:
Choose 0 < r < N a random value relatively prime to N, and compute u = r°m mod N.
If you can somehow obtain the signer’s signature on u, you will have

u? mod N = (r*m)? mod N = rm? mod N,

and multiplying by 7! mod N gives m% mod N, which is a valid signature on m. Again,
this seems a bit far-fetched, since you will have to persuade the signer to sign the gibberish
message u. Still, the existence of such attacks means that forgeries are possible, and this
is precisely what we want to rule out.

For both these reasons, the real RSA signature algorithm is not quite as described
above. It begins the same way, generating a modulus and a pair of exponents as for RSA
encryption. But the signature is not applied directly to the message, but to a hash of the
message, using apublicly known cryptographically secure hash function H whose output
is smaller than the modulus N. The signature on m is then s = H(m)? mod N. To verify
the signature, we compute s® mod N and H(m) and accept if these two are equal. This
modification means that we only have to sign short strings, and it also rules out simple
forgeries of the kind described above. (For example, we would have to find an m that hashes
to s¢ mod N, which presumably cannot be done for preimage-resistant hash functions.)



In practice, digital signatures are always applied to hashes of the messages rather than
the messages themselves. This is one of the reasons that collision-resistance is such an
important property for hash functions: If we could find a pair of meaningful messages
m,m’ that collided (H(m) = H(m')) and obtain a valid signature on m, then we would
have a valid signature on m’.

3 El Gamal Signature Scheme

Here is an alternative signature scheme whose security is based on the conjectured hardness
of the discrete log problem. The algorithm as describe here (and in the textbook) is not
widely used per se, but variants of it, known as the Digital Signature Algorithm and the
Elliptic Curve Digital Signature Algorithm are commonly used standards.

3.1 Key generation

Alice (the signer) chooses a large prime p, a primitive root g mod p, and a secret value
1 < a < p— 2. Her signing key is a. Her public key is (g, p, g¢* mod p).

3.2 Signing

1. Message = m. We use a hash function h such that hash lengths are less than the
number of bits of p.

2. Choose random k relatively prime to p — 1.
3. Set r = ¢* mod p.
4. Set s = ((k~! mod p) - (h(m) — ar)) mod p — 1.

5. The signature is (m,r, s).

3.3 Verification
1. Compute v; = (g%)"r* mod p and ve = g™ mod p.

2. Accept if v1 = vs.

3.4 Why does it work?

If the message is correctly signed,

po = gUek )-(h(m)—ar) mod p-1

= g
gh(m)g—ar mod p.

mod p

h(m)—ar

mod p



Thus
v = gar . gh(m)
g

= V2.

g " mod p

mod p

3.5 Example with artificially small parameters.

Let p = 107 = 2-53 + 1. To find a primitive element, we look for a value such that
g% mod 107 # 1. The first thing we might try is ¢ = 2, and that works. Let’s choose
a = 46 as the secret key. We then have

2%% mod 107 = 56,
so the public key used by signers is the triple
(2,107,56).

Alice wants to sign the message m = 90. With these small parameters, it really doesn’t
make sense to talk about a hash function, so we will just use h(m) = m = 90. Alice gener-
ates a one-time random secret k = 77, which satisfies the requirement of being relatively
prime to p — 1 = 106. She then computes

7771 mod 106 = 95.

r = 27" mod 107 = 63.
m —ar = 90 — 46 - 63- = —2808.
—2808 mod 106 = 54
5 =95-54 mod 106 = 42.
The signature thus has the three components (m,r, s) = (90,63, 42).
The verifier receiving the signed message computes:
(¢*)" mod p = 56% mod 107 = 36.
¥ mod p = 63*2 mod 107 = 105.
v1 = (36 - 105) mod 107 = 35.
ve = 2% mod 107 = 35.

Since v1 = vo, the signature is accepted.



3.6 Reuse of the random value k.

The random value k used to generate the signature must not be used to sign two different
messages. If it is, then this will be detected by a repetition of the value of r in signatures
on two different messages. If it is, then we can do a little math to obtain the secret signing
key. Let us suppose that after computing the signature in the example above, Alice uses
the same key to sign m’ = 21. We then have

s = k' (m —ar)modp—1
— 95-(21 — 46 - 63) mod 106
= 39

To de-clutter the notation, we will perform all the calculations below (additions, mul-
tiplications, and inverses) modulo 106. From the previous signature, we have s = 42,
SO

s =42 =142-5971. 59 = 60 - 59 = 60s’.

The forger does not know the value of k, but can still use the result of multiplying the
above equation by k and obtain

m — ar = 60(m’ — ar),

SO
59ar = 60m’ — m.

Since 59 is invertible mod 106, and since we know the value of r, we can solve the equation
above and find a.

a=(60-21—90)-(59-63)"" = (60-21 — 90) - 91 = 46.

This completely breaks the system, and as a result the attacker is able to forge signa-
tures on any document. It is possible that we will encounter situations where the coefficient
of ar in the equation we obtain this way is not invertible mod p — 1. However, if we use
primes of the form 2¢ + 1 where ¢ is prime, we will find at most two possible solutions to
the equation, and we can check them both.

3.7 Security.

If an attacker is able to calculate discrete logs modulo p at base g, then he can recover the
private key a and forge signatures on any document. So the security of this method depends
on the conjectured hardness of the discrete log problem. We don’t know anything about
the converse—it is conceivable that someone can break this system and forge signatures
without being able to find these discrete logs.



