
CSCI3381-Cryptography

Lecture 7: RSA

October 9, 2014

Much of this is in Chapter 6 of the textbook.

1 General Issues in Public-key Cryptography
In symmetric cryptography, Alice and Bob share a single key K known only to
them. In a public-key cryptosystem, one participant (let’s say Bob) has a pair of
keys Kpub and Kpriv, the public and private keys. Kpub is known to everyone, and
Kpriv only to Bob. If Alice wants to send a message M to Bob, she encrypts it
using Bob’s public key and sends him

C = EKpub
(M).

Bob decrypts it using his private key:

M = DKpriv
(C).

Of course, DKpriv
is required to invert EKpub

, and as usual, we assume that the
algorithms E and D are known to everyone. However, no one should be able to
determine Kpriv given the public key Kpub. The public key is like a combination
lock, distributed openly, and the private key is its combination, known only to one
party.

1.1 Performance
In principle, Bob and Alice could hold a two-way conversation, but Bob would
need Alice’s public key to encrypt and Alice would use her own private key to
decrypt. In practice, this is not really done. While all the algorithms underlying

1

RSA and other public key systems are ‘easy’, they are still much more time-
consuming than symmetric block ciphers like AES and DES. The more common
practice is this: Alice generates a key K for a symmetric cipher and encrypts it
with Bob’s public key; that is, she sends him

EKpub
(K).

Bob decrypts, and all subsequent communication in the session is done using the
symmetric cipher and the shared key K. Note that you get a new key K with each
session, but the public and private keys are long-term.

1.2 Randomization of plaintext
Since the encryption key is public, an eavesdropper can tell whether intercepted
ciphertext C is the encryption of a plaintext message M–she just has to encrypt M
with the public key and compare! For this reason, data to be encrypted with a pub-
lic key is usually padded with a large number of random bits before encryption.
So instead of sending

EKpub
(M)

to Bob, Alice sends
EKpub

(M ||random stuff).

Doing so thwarts this kind of chosen-plaintext attack, because every time M is en-
crypted, the ciphertext is different. It also is effective against many of the attacks
on RSA described below.

1.3 Active attack
Public-key cryptosystems are vulnerable to a man-in-the-middle attack. (This is
not the same thing as the ‘meet-in-the-middle attack’ we saw earlier.) Here the
attacker –let’s call her Cruella– is not a passive eavesdropper, but someone capable
of sending and altering messages on the communciation link. Cruella establishes
her own public-private key pair (K ′pub, K

′
priv) and masquerades as Alice. Let’s say

Bob and Alice want to use the public-key algorithm to set up an encrypted session
with a symmetric key K. Since Bob has Cruella’s public key, he sends

EK′
pub

(K).

This is intercepted by Cruella, who now shares the key K with Bob, who believes
Cruella is Alice. Cruella generates a second symmetric key K ′, and uses Alice’s

2

genuine public key Kpub to send EKpub
(K ′) to Alice, who believes the message

came from Bob. Cruella now has secure links with both Alice and Bob. She
receives messages from one party, decrypts them, alters them, and re-encrypts the
altered message to the other party. Alice and Bob think they are talking to each
other.

Man-in-the-middle attacks are a real problem. To thwart them, it is necessary
to establish some means of authenticating users to one another. (To be concrete
about it, how do you know that website really belongs to Amazon?) We will
discuss authentication and signature methods, as well as ‘public-key infrastruc-
ture,’ a bit later in this course. In a sense, this forces us to bring back the Trusted
Authority.

2 Security of RSA
The RSA algorithm itself is described in the last set of notes, and at the beginning
of Chapter 6 of the text. We saw that it works (because decryption really does
undo encryption), and that it is easy (because all the steps can be carried out
efficiently), but is it secure? Can an eavesdropper recover the plaintext message
M from M e mod N?

2.1 Relation to hardness of factoring
If Eve can factor the modulus N, then she can repeat the key-generation phase
of RSA and recover the private key d. For this reason, breaking RSA is easier
than brute-forcing the key. Even the most naı̈ve algorithm for factoring requires
searching through no more than

√
N values, and the current best algorithms are

far faster than this, having successfully factored (with massive effort) numbers of
more than 700 bits. For this reason, RSA moduli are much longer than keys used
with symmetric block ciphers: 1024 bits and 2048 bits are commonly-used values.

Still, we believe that factoring is hard. Does this imply that breaking RSA is
hard? In one sense, yes: We will prove that someone who possesses the private
key d can factor N with an efficient probabilistic algorithm. So if factoring really
is hard, then it is also hard to recover RSA private keys.

This next piece, which describes the factoring algorithm, is a bit involved, and you
can skip it on first reading. We will use the standard notations p, q, e, d,N for the values
in the RSA algorithm.

3

Since ed− 1 is a multiple of both p− 1 and q − 1, we have

aed−1 ≡ 1 (mod N)

for all a such that gcd(a,N) = 1. Now if ak mod N = 1 for all a relatively prime to N,
then we have in particular (−1)k mod N = 1, so k must be even. Secondly (we won’t
prove this), if ak mod N 6= 1 for some a relatively prime to N, then this must be the case
for at least half the a relatively prime to N.

We can then proceed as follows: We initially set k = ed − 1. For each k, sample
a bunch of values a < N at random and check whether gcd(a,N) = 1. In the (very
unlikely) event that you find gcd(a,N) 6= 1, then the common factor will be a prime
divisior of N and you’re done. Otherwise, calculate ak mod N. If ak mod N = 1 for
all the sampled a, then probably this holds for all a relatively prime to N, in light of our
claim about the number of a for which this does not hold. Thus k is even, so replace it by
k/2 and repeat. Eventually, we will arrive at values k and a such that a2k mod N = 1,
and ak mod N 6= 1.

This means that r = ak is a square root of 1 modulo N. There are four different
square roots of 1, and they are the solutions to the congruences

x ≡ ±1 (mod p)

x ≡ ±1 (mod q).

The Chinese Remainder Theorem tells us that all four solutions are different. If we find
that r is 1 or -1, then we resample, trying out new values of a. Eventually we will find an
r that is a square root of 1 modulo N different from ±1. We have

N |r2 − 1 = (r − 1)(r + 1).

Since N divides neither r− 1 nor r+1, we must have p|r− 1 and q|r− 1, or vice-versa.
Take the gcd of r − 1 with N and you recover a prime factor.

Here is an example to illustrate the algorithm. We take N = 8611 and e = 5, and
somehow recover the private key d = 1685. We will use this to factor N.

>>> N=8611
>>> e=5
>>> d=1685
>>> k=e*d-1
>>> As=[random.randint(2,N-1) for j in range(10)]
>>> pows=[pow(a,k,N) for a in As]
>>> pows
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

4

>>> k=k/2
>>> As=[random.randint(2,N-1) for j in range(10)]
>>> pows=[pow(a,k,N) for a in As]
>>> pows
[1, 1, 1, 1, 1, 1, 1, 1, 5451, 1]

We have found a square root of 1 modulo N, namely 5451, and it is not equal to either
1 or -1. For the next step, we can use either 5450 or 5452. Computing the gcd with N
gives one prime factor of N, and simple division gives the other.

>>> mrpt.extended_euclid(5450,N)
(109, (-30, 19))
>>> N/109
79
>>> 109*79
8611

This result is to be taken as theoretical evidence for the security of RSA: We
cannot recover the secret key d unless factoring is easy. (But see below and the
next homework assignment for an attack based on this algorithm.) It does not
address is the more fundamental question of whether recovering the plaintext from
ciphertext is as hard as factoring. To my knowledge, this is an open question: we
really don’t know whether breaking RSA is as hard as factoring. Security of RSA
is based on a stronger conjecture about computational complexity:
RSA Conjecture. There is no easy algorithm which, given N, e,M e mod N
where N is the product of two unknown primes p, q, and gcd(e, (p − 1)(q − 1)),
computes M mod N.

2.2 Assorted attacks on RSA
Here is a brief description of a number of attacks on RSA. Some of these can be
prevented by random padding, others by following correct procedure in the gener-
ation of keys. You will get to try them all out on the next homework assignment.

2.2.1 Small message, small encryption exponent

A common choice for the encryption exponent is e = 3. If we are encrypting a
small message, say using a 1024-bit RSA modulus to encrypt a 56-bit DES key

5

M, then the ciphertext C satisfies

C = M3 mod N = M3,

because in this case M3 < N. We recover M by taking the cube root, which can
be done quickly. (Observe the important distinction between taking the cube root
mod N, which is believed to be hard in general, and taking the exact cube root,
which is easy.)

2.2.2 Small encryption exponent

Again suppose that e = 3, and let us imagine that the same message M is sent
to three different recipients, holding different public keys. We assume that the
moduli N1, N2, N3 of the keys are pairwise relatively prime (if not, we can factor
two of the moduli and the game is up). So we have

M3 ≡ Ci (mod N)i

for i = 1, 2, 3. By the Chinese Remainder Theorem, there is a unique solution
less than N1, N2, N3, so this unique solution must be M3. Once again, we take the
cube root.

2.2.3 Two public keys with the same modulus

Your employer is lazy about generating primes, so he gives everyone in the com-
pany a public-private key pair N, e, d with different e and d for each employee,
but a single N. Using your own private key d you can factor N, as outlined above,
and thus recover all your colleagues’ private keys.

2.2.4 Two public keys with the same modulus, again

You notice that the public keys of two users have the same modulus but different
encryption exponents e1, e2. If e1, e2 are relatively prime and the two users encrypt
the same message M, then you can recover M from the intercepted ciphertexts
C1 = M e1 mod N and C2 = M e2 mod N by writing 1 = ae1 + be2 and thus
obtaining

M = Mae1+be2 ≡ Ca
1C

b
2 (mod N).

6

2.2.5 Two public keys with a common factor

If N1 6= N2 are RSA moduli with a factor in common, taking the gcd reveals
the factor. We thus factor N1 and N2 and can decrypt all the traffic encrypted
with these public keys. (If you think this scenario, and the preceding ones, are
far-fetched, see ‘Mining Your P’s and Q’s: Detection of Widespread Weak Keys
in Network Devices,’ by N. Heninger et. al., at

https://factorable.net/weakkeys12.extended.pdf

The authors observed many instances of common moduli and common factors in
public keys obtained from the Internet).

2.2.6 Prime Factors too Close

If p and q are too close together (|p − q| < N1/4,) then there is an efficient algo-
rithm for recovering p and q from N. This will be outlined in the next assignment.

2.2.7 Short Plaintext

This is described in Section 6.2.2 of the textbook. If we encrypt a 56-bit DES key
K using RSA, there is a good chance that K is the product of two integers x, y
each less than 109. In this case the ciphertext C satisfies

Cy−e ≡ xe (mod N),

and we can recover x, y with a meet-in-the-middle attack.

7

