
CSCI3381-Cryptography

Lecture 6: Basic Number Theory

September 29, 2014

Practically everything is in the book, Sections 3.1-3.7, Section 6.3 on the
Miller-Rabin primality test, and Section 6.1 on raw RSA. Later in the semester
we will return to Section 3.9. In the next unit we will look at RSA in a more
practical setting. These notes cover the major points, with a bit more emphasis on
computational matters.

This is the number theory we need to explain RSA. We will return to number
theory later when we discuss primitive elements and discrete logs. This is what we
will require to explain Diffie-Hellman key exchanges, and the Digital Signature
Algorithm.

1 Big Numbers, Hard and Easy Algorithms
• Public-key cryptography depends on exact arithmetic with big integers. For

our purposes ‘big integers’ have between a hundred and a few thousand dec-
imal digits. They are too big to count up to by any conceivable assemblage
of computers, but not too big to write down.

• For computational purposes can measure the size of an integer N in two
different ways, either by its absolute magnitude N or by the length of N :
this is the number of digits logN. We mean log10N when we talk about
decimal digits, and log2N when we talk about bits, but these only differ by
a small constant factor (log2 10 ≈ 3.3.)

• Easy algorithms are those whose running time is measured by the length—
something like (logN)α basic steps, where α > 0. Hard algorithms are
those whose running time is measured by the magnitude, typicallyNα steps,
where α > 0.

1

Example 1 Multiplication and Division. If we have to multiply two integers with
k digits each, the standard grade-school algorithm requires about k2 steps, or
2k2 if you count both one-digit multiplications and one-digit additions. This is
(logN)2 where N is the magnitude, so multiplication is easy. Integer division to
compute the quotient and remainder similarly requires about (logN)2 steps.

Example 2 Naı̈ve Primality Testing and Factorization. To test if N is prime, or
to find a factor of N, divide N by every integer 1 < m <

√
N. If no factor is

found, N is prime.
This requires

√
N divisions, each of which requires approximately (logN)2

steps, so the running time is proportional to (logN)2N
1
2 . The crucial factor isN

1
2 ,

which makes this a hard algorithm.

Example 3 Square Roots. To find the closest integer to
√
N , repeatedly split the

interval from 1 to N in half, computing the midpoint m of the interval at each
iteration, and continuing in the right subinterval or the left subinterval depending
on whether or not m2 > N. (This is called the bisection method, a version of
binary search.) After log2N iterations, successive midpoints differ by less than 1,
which gives us the closest integer. We have one multiplication, requiring (logN)2

steps at each iteration, so the total running time is proportional to (logN)3. Thus
finding square roots is easy. This is in contrast to the problem of computing square
roots mod n, which we will take up later.

2 Three Fundamental Facts
1. There are a lot of primes. Euclid’s Elements (c. 300 BC) contains a proof

that there are infinitely many primes. If you study tables of prime numbers,
you find that primes get rarer and rarer as the magnitude increases, but this
theorem says although they thin out, they never completely disappear. What
is important for us is that they do not thin out very fast: If we denote by
π(N) the number of primes less than N, then

π(N) ≈ N

lnN
,

where lnN denotes the natural logarithm of N, approximately 2.3 times the
base 10 logarithm. This means that for 100-digit numbers, roughly 1 out of
every 100 ln 10 ≈ 230 is a prime.

2

2. Testing whether a given integer is prime is easy. You may believe that we
just got through saying it’s hard! But we merely gave a hard algorithm for
the problem. Later on we’ll see the makings of easy algorithms.

3. There is no known easy algorithm for finding the prime factors of an in-
teger...and we think there never will be. Much of the security of existing
public-key cryptosystems rests on the unproven assumption that factoring is
a hard problem, and which means there is no easy algorithm. An important
qualification here is that this assumption is based on conventional models
of computation; it has been proved that if it is possible to build quantum
computers, then factoring is easy.

A consequence of our three fundamental facts is a recipe for creating a secret
that is safe forever: Flip a coin about a thousand times, writing down 1 for heads
and 0 for tails. Take the integer whose binary representation you wrote down,
and test it for primality (fact 2). If it is composite, test the next higher integer,
and then the next, until a prime is found. Fact 1 says that this will only require
a few hundred tests. Repeat the experiment to find a second prime. Multiply the
two numbers together. You can publish the product, but no one can ever find the
factors.

3 Euclid’s Algorithm
Z denotes the set of integers; Z+ the set of positive integers. m|nmeansm divides
n, in other words n = c ·m for some integer c.

Given n ∈ Z, d ∈ Z+, there exist unique q, r ∈ Z with 0 ≤ r < d such that
n = qd + r. q and r are the quotient and remainder in ordinary integer division.
We also write r = n mod d.

For example,
14 = 4 · 3 + 2,−14 = −5 · 3 + 1.

Thus
14 mod 3 = 2,−14 mod 3 = 1.

Once we have the remainder, we can divide r into d to obtain a still smaller
remainder, and continue the process until we get zero as a remainder.

For example

3

68 = 3 · 19 + 11

19 = 1 · 11 + 8

11 = 1 · 8 + 3

8 = 2 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1 + 0.

This procedure is called Euclid’s Algorithm. The last nonzero remainder pro-
duced in the procedure is called the greatest common divisor (gcd) of the numbers
you started with. So in the example, we get gcd(19, 68) = 1. The gcd has the fol-
lowing properties:

gcd(a, b)|a, gcd(a, b)|b,

and for any integer c,

(c|a and c|b)⇒ c| gcd(a, b).

Here is a Python implementation of Euclid’s Algorithm:

def euclid(num1,num2):
while num2 != 0:

(num1,num2)=(num2,num1 % num2)
return num1

Observe that in any division in the process we have

n = qd+ r ≥ 1 · d+ r > 2r.

Thus if ri, ri+1, ri+2 are three successive remainders in Euclid’s algorithm

ri > 2ri+2.

This means that the total number of steps to termination of the algorithm is no
more that 2 log2 n, where n is the larger of the numbers you start with. Since each
division requires no more than (log2 n)

2 steps, this means Euclid’s algorithm is
easy.

4

Every successive remainder produced in the course of Euclid’s algorithm has
the following property: It can be written in the form an+ bm, where n and m are
the numbers you start with. The reason is this: Obviously we have

n = 0 ·m+ 1 · n,m = 1 ·m+ 0 · n.

If at some step in Euclid’s algorithm we have

ri = qri+1 + ri+2,

with
ri = am+ bn, ri+1 = a′m+ b′n,

then
ri+2 = (a− qa′)m+ (b− qb′)n.

If we keep track of these coefficients at each step, we get the result. Here is how
we apply this in our example above, with n = 68,m = 19: The first pairs of
coefficients are (0, 1) and (1, 0). The successive steps give

q = 3, a = 0− 3× 1 = −3, b = 1− 3× 0 = 1, 11 = −3× 19 + 1× 68.

q = 1, a = 1− 1×−3 = 4, b = 0− 1× 1 = −1, 8 = 4× 19− 68.

q = 1, a = −3− 1× 4 = −7, b = 1− 1×−1 = 2, 3 = −7× 19 + 2× 68.

q = 2, a = 4− 2× (−7) = 18, b = −1− 2× 2 = −5, 2 = 18× 19− 5× 68

q = 1, a = −7− 1× 18 = −25, b = 2− 1× (−5) = 7, 1 = −25× 19 + 7× 68.

This is called the Extended Euclid Algoarithm. This procedure for computing
the coefficients a and b adds a couple of extra multiplications and additions of
log n-bit numbers at each step, so we still have an easy algorithm. A Python
implementation is shown below.

def extended_euclid(num1,num2):
#given values x,y return
#(gcd(x,y),r,s) where r*x+s*y=gcd(x,y)

(a,b,aa,bb)=(0,1,1,0)
while num2 !=0:

(q,r)=divmod(num1,num2)
(a,b,aa,bb)=(aa-q*a,bb-q*b,a,b)
(num1,num2)=(num2,r)

return (num1,(aa,bb))

5

4 Unique Factorization
If gcd(m,n) = 1, then m and n have no common factors (other than the trivial
factor 1). We then have am+ bn = 1 for some integers a, b.

Suppose m,n ∈ Z and p is prime, and suppose p|mn. Then p|m or p|n. To
see this, suppose p 6 |m. Then gcd(p,m) = 1–this is where we use the fact that p
is prime. Thus 1 = ap+ bm for some a, b. So

n = (ap+ bm)n = apn+ bmn.

Since p divides mn, apn+ bmn is divisible by p, so p|n.
This means that if we try to write an integer as the product of primes in two

different ways
n = p1 · · · pr = q1 · · · qs,

then the two lists p1, p2, . . . , and q1, q2, . . . ,must contain exactly the same primes:
because if, say, q1 did not appear among the p’s, we would have q1|p1 · · · pr, with-
out q1 dividing any of the pi, contradicting our observation above. For the same
reason, the number of times each prime appears in the two lists must be the same.
For example if 3 appears 4 times among the pi and at least 5 times among the qj,
then we would get two prime factorizations for p/34, one of which contains 3 and
the other of which does not, contradicting what we just showed.

So the factorization of an integer into primes is unique up to a rearrangement
of the factors.

5 Modular Exponentiation and Modular Inverses
We write

a ≡ b (mod n)

if a and b leave the same remainder upon division by n. This is equivalent to
saying n|a− b. An important simple fact here is that if

a1 ≡ b1 (mod n)

and
a2 ≡ b2 (mod n),

then
a1a2 ≡ b1b2, a1 + a2 ≡ b1 + b2 (mod n).

6

Now suppose we have the task of computing something like

5678942376 mod 111427.

The equations above tell us that at each multiplication, we can take the remainder
modulo 111427, so we never have to deal with numbers larger than this. On the
other hand, that still makes 42376 multiplications to perform, so the complexity
of this algorithm is governed by the magnitude of the exponent, so this method of
modular exponentiation is hard.

However, there is a different method, involving far fewer multiplications and
divisions. With fewer than log2(42376) ≈ 16 divisions, we can compute the
binary expansion of 42376, essentially writing this number as the sum of powers
of 2:

42376 = 215 + 213 + 210 + 28 + 27 + 23.

We compute 567892
k
mod 111427 by squaring and reducing k times, so we get

a table of all of these values up to k = 15 with no more than 15 multiplications
and divisions, and then do 5 more multiplications and divisions to find the product
of 567892k mod 111427 for k = 15, 13, 10, 8, 7, 3. The whole repeated squaring
algorithm requires no more than 2 log2N multiplications and divisions of numbers
of length log2N to compute

ab mod c,

where N = max(a, b, c). So modular exponentiation is easy.
Suppose you want to compute a−1 mod n, in other words, to solve the equatin

ax ≡ 1 (mod n).

If a and n have a prime factor p in common, then this is impossible, since
n− ax will be divisible by p. However if gcd(a, n) = 1, then we can write

1 = ax+ ny

for some x, y, and thus solve the equation. Furthermore, we saw above how to do
this with the extended Euclid algorithm, so computing modular inverses is easy.

Python note. Python has built-in exact arithmetic with arbitrarily large integers,
and built-in modular exponentiation. The computation below, which seems to give
the answer instantly, would be impossible without an easy algorithm:

>>> pow(123456789,876547617868168,16763781991)
7608365131L

7

Python will not let you compute the modular inverse, if it exists, by setting
the second argument of pow to -1. To find a−1 mod n, you need to apply the
Extended Euclid Algorithm to (a, n) to find x, y such that ax+ ny = 1. You then
have a−1 mod n = x mod n.

6 Fermat’s Theorem and Primality Testing
Let us choose a prime p and compute the powers am mod p for 1 < a < p, 1 ≤
m < p, We’ll let Python do this for us, in the case p = 13:

>>> table=[[pow(m,n,13) for n in range(1,13)] for m in range(2,13)]
>>> for row in table:
print row

[2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1]
[3, 9, 1, 3, 9, 1, 3, 9, 1, 3, 9, 1]
[4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10, 1]
[5, 12, 8, 1, 5, 12, 8, 1, 5, 12, 8, 1]
[6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1]
[7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1]
[8, 12, 5, 1, 8, 12, 5, 1, 8, 12, 5, 1]
[9, 3, 1, 9, 3, 1, 9, 3, 1, 9, 3, 1]
[10, 9, 12, 3, 4, 1, 10, 9, 12, 3, 4, 1]
[11, 4, 5, 3, 7, 12, 2, 9, 8, 10, 6, 1]
[12, 1, 12, 1, 12, 1, 12, 1, 12, 1, 12, 1]

We observe the following properties: The powers of a always cycle: for in-
stance at a = 3 we get tthe cycle 3, 9, 1 repeatedly, for a = 4,we get 4, 3, 12, 9, 10, 1
repeatedly, and for a = 2, 6, 7, 11 we get a single long cycle of length 12. In all
cases, the length of the cycle is a divisor of 12. This behavior holds in general
(this is not too hard to prove): Whenever 1 ≤ a < p and p is prime, then

ap−1 ≡ 1 (mod p).

This is called ‘Fermat’s Little Theorem’. This gives us a way of proving that a
number is composite without actually producing a factorization. For example,
let n = 1091645783. It is tough to factor this, and trial division would require

8

tens of thousands of divisions. But thanks to Fermat’s theorem and easy modular
exponentiation, and few dozen multiplications and divisions yield

2n−1 mod n = 608256757.

So n is composite. This method yields no information about the factors of n.
Let’s provide just a little more detail about this kind of primality test: It never

gives a false negative—that is, it never labels a prime as composite. There are two
ways that it can give a false positive: It may be that n is composite, and an−1 ≡ 1
(mod n) for some choices of a, but not for others. In this case, it can be shown
that an−1 6≡ 1 for at least half the choices of a (and probably many more) so if
n passes this test for a few dozen sampled values of a, it is almost certain to be
prime. This is a probabilistic algorithm: there is a slight probability of error, but
repeated sampling reduces the probability of error to a negligible amount.

The other way that the test can yield false positives is if n is composite but
an−1 ≡ 1 (mod n) for every 1 < a < n. There are such integers n. They are
called Carmichael numbers, and the Fermat test answers incorrectly for them, no
matter how many values of a are sampled. There are infinitely many Carmichael
numbers, but they are extremely sparse, so that the chance of hitting one in a
random search for primes ≈ 10100 is negligibly small. The problem can be elimi-
nated entirely—a refinement of the Fermat test, called the Miller-Rabin test—also
rejects Carmichael numbers with high probability.

The probabilistic feature of these algorithms can also be eliminated: In 2002,
the Agrawal-Kayal-Saxena algortihm (AKS), an efficient algorithm that tests for
primality with no possibility of error, was published. (Probabilistic tests remain
more efficient, however.)

7 Chinese Remainder Theorem
Let us imagine that we have a pair of counters, one that counts modulo 9, (i.e.
0,1,2,3,4,5,6,7,8,0,1...) and the other modulo 5. We start both counters at 0, and
at the press of a button, both counters advance 1. What configurations of the pair
of counters will we see as we continue to press the button? Here is the result:

>>> [(i%9,i%5) for i in range(45)]
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4),
(5, 0), (6, 1), (7, 2), (8, 3), (0, 4),
(1, 0), (2, 1), (3, 2), (4, 3), (5, 4),

9

(6, 0), (7, 1), (8, 2), (0, 3), (1, 4),
(2, 0), (3, 1), (4, 2), (5, 3), (6, 4),
(7, 0), (8, 1), (0, 2), (1, 3), (2, 4),
(3, 0), (4, 1), (5, 2), (6, 3), (7, 4),
(8, 0), (0, 1), (1, 2), (2, 3), (3, 4),
(4, 0), (5, 1), (6, 2), (7, 3), (8, 4)]

The pair of counters cycles through all 45 possible configurations before re-
turning to 0.

On the other hand, if we had used the moduli 4 and 6, we would get

>>> [(i%4,i%6) for i in range(24)]
[(0, 0), (1, 1), (2, 2), (3, 3),
(0, 4), (1, 5), (2, 0), (3, 1),
(0, 2), (1, 3), (2, 4), (3, 5),
(0, 0), (1, 1), (2, 2), (3, 3),
(0, 4), (1, 5), (2, 0), (3, 1),
(0, 2), (1, 3), (2, 4), (3, 5)]

The difference between the two counters is always even: Thus there are two
complete cycles, with all the pairs in which the difference is divisible by 2 ap-
pearing twice, and the other twelve pairs (for instance, (2, 5)) not appearing at
all.

The difference between the two situations occurs, as you might expect, be-
cause 9 and 5 are relatively prime, whereas 4 and 6 have the common factor 3. To
see why we get the complete cycle of length 45 in the first case, without having
to tabulate the entire list, observe that if a pair (j, k) appears twice, then we have
i < i′ such that

i ≡ i′ ≡ j (mod 9),

i ≡ i′ ≡ k (mod 5).

Thus 9|(i − i′) and 5|(i − i′). Because of unique factorization, all of the factors
of 9 and all of the factors of 5 must appear in the prime factorization of i− i′, so
45|(i− i′) This means that there can be no repeats of a pair among

(i mod 9, i mod 5),

for 0 ≤ i < 45. Since no pair can appear twice among these 45 pairs, every pair
must occur exactly once.

10

The identical argument works for every pair of relatively prime moduli. Here
is the general principle: If m,n are relatively prime, and 0 ≤ j < m, 0 ≤ k < n,
then there is a unique 0 ≤ x < mn such that

x ≡ j (mod m),

x ≡ k (mod n).

This fact is called the Chinese Remainder Theorem. Here is another way to
see that the Chinese Remainder Theorem is true, as well as a way to compute
the solution x to such a pair of equations. Let K = mn. Because m and n are
relatively prime, n has a multiplicative inverse modulo m, and vice-versa. We
then pick

x = (j · n · (n−1 mod m) + i ·m · (m−1 mod n)) mod K.

To see that this works, observe that if we reduce modulo m, then the second term
becomes 0 and the first term is congruent to j · 1 = j modulo m. Likewise, the
second term is congruent to k modulo n.

Here’s an example, again with the moduli 9 and 5 that we used before. Sup-
pose we want to solve

x ≡ 7 (mod 9)

x ≡ 3 (mod 5).

We first need 5−1 mod 9 and 9−1 mod 5. If we had big numbers we would do this
efficiently with the extended Euclid algorithm, but here the numbers are so small
that we can figure it quickly with very little calculation:

5−1 mod 9 = 2, 9−1 mod 5 = 4.

We thus get

x = (7× 5× 2 + 3× 9× 4) mod 45

= (70 + 108) mod 45

= (25 + 18)

= 43.

11

8 RSA
Here we present the RSA public-key cryptosystem as a number-theoretic algo-
rithm; we’ll talk about the cryptographic significance later. There are three sepa-
rate algorithms. It is important to note every step along the way that each of these
algorithms is easy.

8.1 The algorithms
8.1.1 Key generation

1. Bob generates two distinct large random prime numbers p and q: he can
pick random target values and test nearby numbers until he finds a prime.
Because of easy primality testing and the density of primes, this is easy.

2. Bob computes N = pq and K = (p − 1)(q − 1). This is easy because
multiplication is easy.

3. Bob searches for a (typically small) value e such that gcd(e,K) = 1. This is
easy because K < 101000 cannot have a large number of distinct prime fac-
tors, so there will be some small prime that does not divide K. He publishes
(e,N) as his public key.

4. Bob computes d = e−1 mod K. This is easy with the extended Euclid algo-
rithm. He keeps (d,N) as his private key.

8.1.2 Encryption

Alice’s plaintext message must be a positive integer M < N. She sends Bob the
ciphertext

C =M e mod N.

This is easy with the repeated squaring algorithm.

8.1.3 Decryption

Bob computes
Cd mod N

to recover the plaintext.

12

8.1.4 Proof of Correctness

C ≡M e mod N,

so

Cd ≡ M ed

≡ M t(p−1)(q−1)+1 for some t since d = e−1 mod (p− 1)(q − 1)

≡ (M t(q−1))p−1M

≡ M (mod p).

The last equality follows by Fermat’s theorem if p does not divide M. If p does
divide M (which is extremely unlikely for big numbers and a random message
M) then it follows because M ≡ 0 (mod p).

By the identical argument

Cd ≡M (mod q).

By the Chinese Remainder Theorem there is exactly one solution to

x ≡M (mod p)

x ≡M (mod q)

that is less than N, so the only such solution must be M itself. Therefore

Cd ≡M (mod N),

so the decryption algorithm recovers the plaintext.

8.2 Worked Example
We work with artificially small parameters. Bob begins by generating p = 79,
q = 109. We then get

N = 79× 109 = 8611

K = 78× 108 = 8424.

Note that 3|K, so we cannot choose e = 3. However, e = 5 works.Observe also
5× 1685 = 8424 + 1, so e−1 mod K = 1685. We thus have public key (5, 8611)
and private key (1685, 8611).

Let’s choose plaintext M = 4000. The following calculations show encryp-
tion, and then decryption.

13

>>> pow(4000,5,8611)
8469
>>> pow(8469,1685,8611)
4000

14

