CSCI3381-Cryptography

Lecture &8: Diffie-Hellman and Related Methods
October 15, 2014

The relevant sections of the textbook are 3.7, 7.1, 7.4, and 7.5.

1 Prelude: Merkle Puzzles

The first public-key cryptographic system was a key-agreement protocol invented
in 1974 by an undergraduate at Berkeley named Ralph Merkle. Merkle proposed
it as a project for a Computer Security course, with the topic, ‘Establishing se-
cure communications between separate secure sites over insecure communication
lines.

Over the years, Merkle gave several different accounts of the scheme. The
description here is closer to the one in his Ph.D. thesis than the version in his
undergraduate proposal. Suppose Alice and Bob want to agree on a symmetric
key, say a 56-bit DES key. Alice generates one million different messages that all
have the format:

ID_TAG:03b59f26 KEY:892£3c490d1b92

where the key and ID fields have different values in each of the messages.
She then lightly encrypts each message: for instance, Alice and Bob can publicly,
over the insecure channel, agree on the high-order 32 bits of a DES key, then
Alice can generate 24 additional key bits at random for each of the messages and
encrypt each message with the resulting 56-bit key. She then sends all one million
encrypted messages to Bob.

Bob, on his end, chooses one of the messages at random and proceeds to attack
it by brute force. Since the size of the key space is 224 ~ 16 million, this attack
should succeed after a few minutes, as soon as he guesses a key that reveals the
characters ID_TAG: and KEY : in the appropriate positions. Let’s suppose the

1



decrypted message is the one shown above. Bob sends the ID field 03b59£26
back to Alice, who looks this up in the list of messages she generated. Now Alice
and Bob share the key 892£3c490d1b92.

Eve knows the scheme, can intercept all one million messages, and sees the
ID field that Bob sends to Alice, but can only recover the key by trying to decrypt
each of the messages and checking for a match with the ID field. She will have to
check 500,000 messages on average. Assuming the brute-force attack requires 5
minutes to decrypt a single message, Eve will need five years to recover the key.

There are two security parameters in this scheme: the difficulty of decrypting
a single message, and the number of messages. Alice’s effort is proportional to the
number of messages, Bob’s effort is the difficulty of decryption, and Eve’s to the
product of the two. To simplify a bit, Eve’s effort is proportional to the square of
Alice’s and Bob’s effort. The problem is that this quadratic blowup in effort is not
big enough to turn an easy problem into a hard one. If Alice and Bob are ordinary
users and Eve is the NSA, Eve will easily bridge the gap. If Alice increases the
security parameters significantly, then the time required by her and Bob to agree
on a key, which is already pretty large, becomes impractical. What is needed is
something more like an exponential blowup, rather than a quadratic increase in
effort.

Still, this was a new way of thinking about cryptography. The professor in
Merkle’s course wrote that his proposal was ‘muddled terribly’ and rejected it,
suggesting that he work on a different topic. Merkle dropped the course, and
tried to publish his idea, but his initial version of the paper was also rejected. He
moved from Berkeley to Stanford to do graduate study with Martin Hellman, who
together with another grad student, Whitfield Diffie, had been working on very
similar ideas. Diffie and Hellman developed a different key agreement protocol
that seemed to meet the heightened security requirements. (The story is well
known, but Merkle does not seem to have gotten his full share of the credit for the
invention of public-key cryptography.)

The security of the Diffie-Hellman protocol is based on another presumably
hard number-theoretic problem, the Discrete Log problem. This is a little more
difficult to explain than factoring; the next section is devoted to the underlying
math.



2 Primitive Elements Modulo a Prime

When we introduced Fermat’s Theorem, we saw that if p is prime, and 0 < a < p,
then the powers of @ mod p decomposed into cycles whose length is a divisor of
p — 1. For example, with p = 13 and a = 3, we have the powers a* (mod 1)3 for
k=1,...,12are

3,9,1,3,9,1,3,9,1, 3,9, 1.

Thus 3 =1 (mod 13). This of course implies 3'* = 1 (mod 13), which is what
Fermat’s Theorem tells us.
If we choose a = 6 instead, we get the following powers:

6,10,8,9,2,12,7,3,5,4,11, 1

All 12 nonzero elements mod 13 appear in this list, so the associated cycle has
length 1. We call 6 a primitive element or a primitive root mod 13. Such primitive
elements are always guaranteed to exist.

Fact If p is a prime, then there will be at least one element 0 < a < p such that
the powers of a modulo p consist of all p — 1 elements 1,...,p — 1.

2.1 How Many Primitive Elements?

Our calculations above show that 6 is a primitive elment mod 13, but 3 is not.

How many primitive elements mod 13 are there? Every elementof {1,...,12}
has the form 6* mod 13 for some k = 0, 1, ..., 11. If k has a factor in common with
12, then by Fermat’s Theorem, (6%)! mod 13 = 1 for some ¢ smaller than 12, and
thus 6% cannot be a primitive element. But if k£ has no factor in common with 12,
such a ¢ cannot exist. Thus the number of primitive elements mod 13 is equal to
the number of elements of {0, ..., 11} that are relatively prime to 12.

Let’s see how this plays out in our example. The numbers less than 12 that
are relatively prime to 12 are 1,5,7,11. Thus the primitive roots are 6,6° mod
13,67 mod 13,6 mod 13. In other words, the primitive elements are 6, 2, 7,
and 11. The number of positive integers less than n and relatively prime to n is
denoted ¢(n). So the number of primitive elments mod p is ¢(p — 1).

2.2 Discrete Logarithms

Suppose that we’re given a large prime p, a large primitive element ¢ mod p, and a
large integer k. “Large” for us means googol-sized: too big to count up to, but not

3



too big to write down. We know we can compute a* mod p easily by the repeated
squaring algorithm.

What about going in the opposite direction? That is, suppose we’re given a
nonzero element b of {1,...,p — 1} and we know a primitive element a. There is
a unique k such that 0 < k < p — 1 such that a* mod p = b. (This value of k is
called the mod p discrete logarithm of b at base a. For instance, if p = 13, a = 6
and b = 3, the discrete logarithm is 8.) How do we find £? We could compute
all the powers of @ mod p, and stop when we found b, but this is not feasible with
such large values. Although there are better algorithms for finding discrete logs,
there is currently none so good that it represents a practical alternative to brute-
force search when the numbers get very large. The function x — a” mod p is
another candidate for a one-way function: easy to compute, impossible in practice
to invert, and it figures in a number of different cryptographic schemes. (The
current record, achieved earlier this year, was the computation of a discrete log
modulo a prime with 180 decimal digits.)

3 Diffie-Hellman Key Agreement

Like Merkle puzzles, Diffie-Hellman Key Agreement allows two parties who have
never met to agree on a key to use for subsequent communication with a sym-
metric cipher. The difference is that the eavesdropper’s computational effort to
recover the key is, as far as we know, much larger than the effort of the communi-
cating parties, so that key agreement can be very fast, but any attack is infeasible.

First, Alice and Bob agree on a large prime p and «, a primitive element mod
p. (See below on finding primitive elements.) This agreement can be made over
an insecure channel.

Alice chooses a random x between 2 and p — 1, computes o mod p, using
modular exponentiation, and sends this value to Bob, keeping z secret.

Bob does likewise, picking a random y, sending o mod p to Alice, and keep-
ing y a secret.

Alice can now compute (a¥)” mod p = «®¥ mod p, and Bob can compute
(a®)Y mod p = & mod p. This common value is the shared key.

3.1 Security against cryptanalysis.

Eve knows p and «, because these values were sent over an insecure channel. If
he were able to compute discrete logs, he could intercept o mod p and recover z,



then intercept @Y mod p and compute the shared key a*¥ mod p. Thus the scheme
requires the assumption that computation of discrete logs of very large numbers
is infeasible.

In fact, we have to assume something stronger than infeasibility of computing
discrete logs: namely that one cannot recover o mod p from o mod p and
oY mod p. It’s conceivable that there is an efficient method for doing this that does
not entail an efficient method to compute discrete logs. Thus, as is the case with
RSA, the security of Diffie-Hellman and related schemes depends upon a number
of unproved assumptions about the computational complexity of number-theoretic
problems. These assumptions have held up very well in practice: If anyone has
found efficient algorithms for these problems, they’re not talking about them.

3.2 Vulnerability to an active adversary

As with public-key encryption, an active adversary Cruella can launch a man-
in-the-middle attack: She can intercept the values sent between Alice and Bob,
generate his own random values =’ and 3/, send a¥ mod pto Alice, and o mod p
to Bob. Cruella now shares the key oY’ mod p with Alice, and o*"¢¥ mod p with
Bob. If Alice then sends Bob a message encrypted with the key o*¥" mod p (which
she thinks she shares with Bob), Cruella intercepts it, decrypts it, re-encrypts it
with o*'¥ mod p, and sends the result on to Bob. Bob decrypts it with the key he
thinks he shares with Alice, but in reality shares with Cruella. As long as Cruella
can keep the masquerade up, Alice and Bob believe that they are communcicating
securely, while Cruella reads everything they send to one another.

Fixing this problem requires some form of authentication of the parties, a sub-
ject we will take up later.

Diffie-Hellman key agreement can be adapted to sending a message securely
as in the parable of the box with two latches. Let’s suppose the plaintext message
is1 < f < p. B =«a”mod p for some x. Alice chooses a secret random y such
that 1 < y < p — 1, and such that y is relatively prime to p — 1. This assures
that ! mod p — 1 exists. She sends Y = o*¥ mod p to Bob. Bob similarly
chooses a z relatively prime to p — 1, raises Alice’s message to the power z,
and sends o®¥* mod p back to Alice. Alice raises to the power 3! mod p — 1,
giving a®* mod p, and sends this to Bob. Bob now applies 2! mod p — 1, giving
o® mod p = . (This is the ‘three-pass protocol’ described in Section 3.6.1 of the
textbook.)



3.3 Finding primitive elements mod p

As far as I know, there isn’t a really good algorithm for doing this for arbitrary
primes p. If p — 1 has the form 2¢, where ¢ itself is prime, then there is a simple
method for finding primitive elements. Thus a reasonable strategy is to repeatedly
generate random primes ¢ and test to see if p = 2¢ + 1 is prime. For hundred-
digit numbers, you may have to apply the primality test as many as one hundred
thousand times to locate such a pair (p, ¢). This is slow, but since this computation
is just the preparatory phase of the algorithm, one can afford the extra time. Once
p is found, we guess a random « between 2 and p — 1. How can we tell if « is
a primitive element? We know there is at least one primitive element /3, and we
know that & = ¥ mod p for some k. Furthermore, we know that « is a primitive
root if and only if £ is relatively prime to p — 1 = 2¢, which means that k is
neither even, nor divisible by g. Of course we cannot compute k—that would
mean solving the discrete log problem. But we can determine if & is divisible by
2: If k is even (k = 2r for some r) then

of = B = (B*)" = (B"1)" =1"=1 (mod p),

and, by the same argument, if k is divisible by ¢ then o? = 1 (mod p). We
thus compute both o and o mod p. If neither answer is 1, then « is a primitive
element. In practice it will take very few trials to locate a primitive element.

3.4 Example with Small Numbers

Let g = 5and p = 2¢g + 1 = 11. Suppose we were to guess that 5 is a primitive
root mod 11. We note that (calculating mod 11) 52 = 3, 5* = 9, and so 5° =
9.5 =45 = 1. So 5 flunks the test—it’s not a primitive element. So let’s guess 2.
2% = 32 = 10, and 2% = 4, so 2 passes: It’s a primitive element mod 11.

Now suppose Alice and Bob want to use the pair (11,2) to agree on a key,
using the Diffie-Hellman method. Alice generates at random x = 8 and computes

28 =256=3 (mod 11),

and sends this to Bob. Bob generates, at random, 5, and computes
2°=32=10 (mod 11),

and sends this to Alice. Alice now computes

1= (-1®=1 (mod 11),

6



and Bob computes
33=243=1 (mod 11),

so the agreed value is 1. (This won’t happen in real life with 100-digit numbers.)

4 ElGamal Public-Key Cryptosystem

Diffie-Hellman is, in a sense, a public-key system, since it enables users to se-
curely agree on a secret key without having to meet. But it does not in itself
supply a public-key encryption mechanism. We can use the same ideas, however,
to create a public-key system. In essence, Bob publishes o mod p as his public
key and saves y as his private key. Alice, wishing to send a message m to Bob,
picks a random x and “encrypts” m with the shared key as m - o®¥ mod p. Here
are the details.

4.1 Key Generation

Bob picks a large prime p, a primitive element o mod p, and an integer y between
2 and p — 1. He saves y as his private key, and publishes (p, o, ¥ mod p) as his
public key.

4.2 Encryption

Alice breaks the plaintext message into blocks that can be encoded as integers less
than p. To encrypt such an integer m, she generates a random z between 2 and
p — 1, looks up Bob’s public-key information, and computes (a¥)* = ¥ mod p.
She then sends Bob the pair

(o mod p, (m - &™) mod p).

4.3 Decryption

Bob, upon receiving this, takes the first component of the pair and uses his private
key y to compute
(@®)P~"Y mod p = (o)~ mod p.

(The above equation holds because

aa:y(aac)p—l—y _ a(p—l)a:+xy—a:y _ (ap—l)z =1* =1 (mod p)

7



Alternatively, Bob could compute (”)? mod p and then find the multiplicative
inverse of this value, using the extended Euclid algorithm, but the method outlined
above is faster.)

Bob now takes the second component of the pair to recover the plaintext:

(m - a™) - (&™)t mod p = m.

4.4 Comments on the algorithm

Security against active adversaries. Like all public-key systems, this is vulnerable
to an attack by an active adversary who attempts to pass off his own public key
as someone else’s. This difficulty can be addressed by the use of certified public
keys.

Public keys versus private keys. Unlike RSA, private keys in this system look
different from public keys, and are not interchangeable.

Plaintext length versus ciphertext length. The length of the encrypted message is
twice the length of the plaintext message, since Alice must send a pair of values
to Bob.

Randomization 1t’s not necessary to salt the plaintext, since Alice generates a ran-
dom value each time she transmits a block—this random value is incorporated
into the key. It is essential that she do this, since the underlying symmetric en-
cryption algorithm encrypts m as m- K mod p, where K (in this case a®¥ mod p)
is the key—it’s just a multiplicative cipher. Although brute-force search through
the key space is not feasible, if Alice reuses the key /K for all the blocks of the
message, and one block of plaintext becomes known, then K can be computed
and the other blocks will be known as well.

One could avoid this last difficulty by using a different symmetric encryption
algorithm. For instance, the high-order 56 bits of &®¥ mod p could be used as a
DES key to encrypt the message. This requires the assumption that it is compu-
tationally infeasible to determine the high order 56 bits of o®¥ mod p, given the
values o mod p and ¥ mod p.

4.5 Example with small numbers

Bob’s public key is (7,3,3* mod 7 = 4), and his private key is 4. Alice wishes to
encrypt the message block 5. She generates the random value x = 2 and computes

5.4% =3,



and sends the pair
(32 mod 7 = 2,3)

to Bob.
Bob computes
271 =4

from the first component of the ciphertext, then multiplies this by the second com-
ponent of the ciphertext to obtain

4-3mod 7 =5,

which is the original plaintext message block.



