
CS381-Cryptography

Lecture 5: Block Ciphers

September 22, 2014

1 Overview

1.1 What is a Block Cipher?
Most (not all) modern symmetric encryption is built on block ciphers, which are
algorithms for encrypting fixed-length blocks of data.

Figure 1: Block cipher encryption of a single block of data

Formally a block cipher is a pair of functions E,D : {0, 1}k × {0, 1}m →
{0, 1}m. k is the key length, in bits, and m the block size. We require that for all
K ∈ {0, 1}k, P ∈ {0, 1}m,

D(K,E(K,P )) = P.

1



The decryption and encryption functions for block ciphers need to be fast to
compute, and easily implemented in hardware.

If you choose a key K ∈ {0, 1}k, then the function

EK : P 7→ EK(P )

is a permutation of {0, 1}m. The idea is that if you selectK at random, this should
be for all practical purposes indistinguishable from a randomly-selected permu-
tation of {0, 1}m. (A randomly-selected permutation is like using the substitution
cipher with a random permutation of the alphabet, although here the alphabet has
2m letters rather than 26.) We do not have enough time or space in the universe
to generate or specify a random permutation of {0, 1}m for, say, m = 128, which
is a typical value. The trick is to use a short key to generate a permutation that
‘looks’ random.

1.2 Block Ciphers in Wide Use
They have names like DES, IDEA, Blowfish, Twofish, and AES. DES, the Data
Encryption Standard, was introduced in the 1970’s, and adopted as the official
standard for encrypting non-classified government communications. DES has

k = 56,m = 64.

The fact that there are “only” 256 ≈ 7× 1016 keys proved to be a serious problem.
AES, the Advanced Enryption Standard, originally called the Rijndael Cipher,

was adopted in 2000 as the replacement for DES. It can be used with several
different key sizes, but typical values are

k = m = 128.

The textbook gives a lot of detail–more than we need to know–on the internal
structure of both DES and AES.

2 Block Ciphers as Black Boxes
Here we discuss properties that are independent of the internal structure of the
block cipher. We will assume that we have an ‘ideal’ block cipher: in other words,
we will pretend that our key is a permutation of {0, 1}m selected uniformly at
random from all (2m)! such permutations.

2



2.1 Security Against Brute-force Attack
2.1.1 Attack with two known plaintexts

If Eve intercepts a block obtained by encrypting with a block cipher (for example,
a 16-byte AES block) she really can’t decipher it, even with exhaustive search, if
she knows nothing about the distribution of plaintext messages—we are no longer
thinking of these things as being normal English.

What we’ll show here is that if Eve knows just a few plaintext-ciphertext pairs,
then exhaustive search is effective.

First imagine the following experiment. Suppose you have r randomly-selected
permutations π1, . . . , πr of {1, . . . , N}. Suppose you know a value of π1, say
π1(i) = j. What is the probability that πk(i) = j for one of the other permu-
tations πk? We can obtain an upper bound on this probability by

Prob[
r∨

k=2

πk(i) = j] ≤
r∑

k=2

Prob[πk(i) = j]

=
r − 1

n
.

Suppose instead that we know two values of π1, say π1(i1) = j1, π1(i2) = j2.
What is the probability that one of the other permutations πk agrees at these two
values?

Prob[
r∨

k=2

(πk(i1) = j1) ∧ (πk(i2) = j2)] ≤
r∑

k=2

Prob[(πk(i1) = j1) ∧ (pik(i2) = j2)]

=
r − 1

n(n− 1)
.

What does this say about exhaustive-search attacks? For DES, if we know a
single plaintext-ciphertext pair of blocks we can encrypt the plaintext under all
possible keys until we find a block that matches the ciphertext. The probability
that this can happen with more than one key is no more than

(r − 1)

n
≈ 256

264
= 2−8 =

1

256
,

so this attack is likely to reveal the key. If we have two plaintext-ciphertext pairs,
and search for a key that encrypts both plaintexts correctly, then the probability

3



that more than one key does this is no more than

r

n(n− 1)
≈ 256

2128
= 2−72,

and for AES it is no more than

2128

2256
= 2−128.

So it is almost certain that there is a unique key that generates the pair of blocks.
This attack requires 2k+1 encryptions in the worst case, and 2k encryptions

on average. For 128-bit keys it is really impossible: we have only a negligible
probability of finding the key as a result of any search that we could carry out in
practice.

The 56-bit key for DES, on the other hand, is problematic. This weakness
was pointed out when the standard was first proposed in the 1970’s. The attack
was successfully carried out in 1997, first by distributed computation by many
computers working over the Internet, and then by specialized hardware that could
test many keys in parallel. (The hardware was able to perform something like 80
billion encryptions per second!)

2.1.2 Multiple Encryption for Increased Key Size: Meet-in-the-middle at-
tack

One might try to remedy the weak key length in DES by encrypting twice, using
two different keys:

E ′(K1,K2)
(P ) = EK2(EK1(P )).

The hope is that in doing so we will have effectively doubled the key length,
and thus squared the size of the key space. For DES this means a 112-bit key,
which should be secure against brute-force attack.

You might well wonder at this point whether composing two short keys in this
way is not equivalent to using a single short key, i.e., is there a key K3 such that

E(K3, P ) = E(K1, E(K2, P ))?

It is known (see ‘DES is not a group’ in the textbook) that this does not occur in
DES.

4



However, this double-encryption approach is vulnerable to a ‘meet-in-the-
middle attack’, which renders it not much more secure than using a single key,
provided one has a great deal of memory available. The idea is simple—for con-
creteness, we will assume a key size of k = 56 bits and a block size of m = 64
bits, which are the DES parameters.

Suppose we know two plaintext-ciphertext pairs (P1, C1), (P2, C2), where

C1 = E(K2, E(K1, P1)), C2 = E(K2, E(K1, P2)).

The attack begins by encrypting the pair of blocks (P1, P2) under all 256 keys,
storing the resulting ciphertext pairs in a table, and sorting the table. Sorting a
list of size n requires time proportional to n · log2 n, so in this case we require
56× 256 steps for the sorting in addition to the 2× 256 encryptions of blocks. For
the second step, we decrypt (C1, C2) under all 256 keys and search for the resulting
pair in the table. This requires 2 · 256 decryptions of blocks, plus 256 searches of
a sorted table, each of which uses about 56 probes. We know that there is at least
one pair of keys (K1, K2) that results in a match. How likely is it that we will find
a second match?

Our table contains no more than 256 pairs of blocks. The probability that a
randomly generated pair of blocks occurs in the table is 256/2128 = 2−72. Thus
the probability that we will find more than one match in the decryption phase is
no more than

256/272 = 2−16 = 1/65536.

It is thus highly likely that the two known-plaintext pairs reveal the pair of keys
that was used. In the unlikely event that we find more than one pair of keys that
works, a third known-plaintext pair is virtually certain to resolve the issue.

The point of this attack is that it is only a few orders of magnitude more costly
in terms of time that using a single 56-bit key, and thus the encryption method is
far weaker than what one expects with a 112-bit key.

Triple encryption with DES is believed to be secure, and was adopted as a
standard in the late 1990’s.

2.2 Modes of Operation
You have a block cipher that encrypts a single block of data. How do you use it to
encrypt multiple blocks?

5



2.2.1 The obvious (bad) answer: ECB mode

ECB stands for ‘electronic code book’. It is the obvious thing, just encrypt each
block independently. You’ve already seen this with the monoalphabetic substitu-
tion cipher. The key is a permutation of the 26 letters, a block is a single letter,
and encryption is applied block by block. Much of the weakness follows from the
fact that repeated blocks of plaintext show up as repeated blocks of ciphertext.

Figure 2: ECB encryption of N blocks of data

The same weakness is present in ECB with larger block sizes. If two blocks
of ciphertext are identical, then the corresponding blocks of plaintext are also
identical. Thus the ciphertext leaks information about the plaintext at the cost of
very little computational effort.

You might think that in spite of this, a large block size would make repeated
blocks in plaintext very rare, and that in any case, an occasional repeated block
in ciphertext would not give away very much useful information. The following
demonstration shows just how wrong that can be: The image on the left of Figure
3 was saved in a bit-mapped file format, so that apart from the short file header,
every byte of the file is associated with one image pixel, with three bytes for each
pixel. The file contents were encrypted by AES in ECB mode, and the origi-
nal header restored so that the encrypted file could be displayed as a bit-mapped
image.

Moral: Don’t use ECB mode.

6



Figure 3: ECB encryption of a bit-mapped image. Large regions of the image with
a single color lead to a large number of repeated blocks.

2.2.2 CBC Mode

CBC stands for cipherblock chaining. The ciphertext block generated in one step
is mixed with the plaintext block of the next step prior to encryption. This leaves
the problem of what to mix the first plaintext block with, and for this reason a
special block called an initialization vector (IV) must be supplied. So we have
(see Figure 4)

C1 = EK(IV ⊕ P1)

Ci+1 = EK(Ci ⊕ Pi+1),

for i ≥ 1.

Figure 4: CBC encryption of multiple blocks of data

Figure 5 shows the image experiment, this time conducted in CBC mode.

7



Figure 5: CBC encryption of a bit-mapped image. The chaining process alters
the input to each encryption block, and the resulting ciphertext looks completely
random.

To decrypt, Bob computes

P1 = IV ⊕DK(C1)

Pi+1 = Ci ⊕DK(Ci+1),

Bob must have IV available to obtain the first plaintext block, so the IV must
be sent unencrypted. One consequence of this is that the ciphertext is one block
longer than the plaintext message.

You might wonder why we bother with the IV at all, and not simply send
C1 = EK(P1) as the first ciphertext block. The reason is that if we have several
long messages encrypted with the same key, then a repetition of the first blocks in
two of the messages will show up as a repetition of the first blocks in the received
ciphertexts.

For the same reason, one should not use the same IV for two different mes-
sages. (For a related, but somewhat subtler reason, it should not be possible to
predict the IV of the next message.) A sound practice is to choose a random IV
for each message.

CBC has a nice error-recovery feature: Although changing one bit of a plain-
text block completely changes all subsequent ciphertext blocks, a change of one
bit of a ciphertext block because of a transmission error will only alter one bit in
the next decrypted plaintext block, and have no effect on the subsequent ones.

8



Figure 6: Encryption of multiple blocks in CTR mode. Just as with the one-time
pad, the plaintext is XORed with a keystream. In this case the keystream is gener-
ated using the block cipher applied to successive values of a counter block.

2.2.3 CTR Mode

CTR stands for counter. An initial value ctr is chosen for a counter block. If we
have N plaintext blocks to send, we encrypt the blocks ctr + i for i = 1, . . . , N,
and XOR the results with the subsequent blocks of plaintext. (Figure 6). Note that
we do not use the block cipher to directly encrypt the plaintext blocks; instead this
is a stream cipher in which we use the block cipher to generate the keystream. As
is the case with stream ciphers, decryption is the same as encryption, and you can
not use the same keystream twice. For this reason, counter values should never
repeat.

If the encryption function were truly random, then this method would be as
secure as the one-time pad, provided that we never repeat a value of the counter
fed toEK . The probability that we repeat a value of the counter with two messages
(or any small number of messages) is quite small, unless the messages are huge.
For example, suppose we have two messages that are both one million blocks long,
and that we use a block cipher with a 128-bit block size. We randomly initialize
ctr for each of these messages. We will get a repeated value of the counter only
if the initial values of ctr for the two messages are within two million of one
another. The probability of this happening is no more than

2 · 106

2128
< 3 · 10−31.

9



Observe that the large block size is crucial here. Security in practice depends on
the extent to which the block cipher really does behave like a random function.

An advantage of CTR mode is that it is very fast and can be executed in paral-
lel.

3 Internal Structure of Block Ciphers (especially AES)
Good block cipher design is an extremely difficult task. Both AES and triple-
DES have been subject to intense scrutiny for many years, and no major security
weakness has been discovered. If you need a block cipher, use one of these—don’t
try to design your own.

Still, it’s worth talking about some of the design principles behind these block
ciphers. Block ciphers typically have a round structure: In each round, the key,
or a portion of the key, is used to derive a round key. Each round further alters
the plaintext. Each individual round has a simple, easy-to-understand structure,
and permits a rapid implementation. But the accumulated effect of all the rounds
is supposed to make it effectively impossible to recover information about the
plaintext block from the ciphertext block.

3.1 Substitution-Permutation Networks
What’s inside a round? One general model (essentially followed in AES, but not
in DES), is called a substitution-permutation network. This is illustrated in Figure
8. The input block of the round is first XORed with the round key. The resulting
block (16 bytes in the example) is partitioned into 1-byte sub-blocks. The byte in
each sub-block is replaced by a different byte, by means of a lookup table called
an S-box. The bits of the outputs of the S-box are then permuted and the resulting
output becomes the input to the next round. We call these three phases of a round
AddKey, Sub, and Mix.

If we did not have the S-boxes, then regardless of the number of rounds, the
ciphertext C would be π(P ) ⊕ K ′, where K ′ is a block derived from the key,
and π(P ) is some known permutation of the bits of P. This means that if we
encrypted two different plaintext blocks P1, P2 to produce ciphertexts C1, C2, we
would have C1 ⊕ C2 = π(P1)⊕ π(P2), revealing information about the plaintext
with no knowledge of the key.

For the same reason, the S-boxes must be a nonlinear functions of the input
bytes.

10



Figure 7: Round structure of a block cipher.

11



Figure 8: One round of a substitution-permutation network. The S-boxes are
lookup tables that provide a permutation of {0, 1}8. The mixing permutation per-
mutes the bits of a 128-bit block.

12



The S-boxes are designed so that changing any bit of the input byte changes at
least two bits of the output byte. The mixing permutation is designed so that the
output bits of a single S-box are sent to different sub-blocks. The effect of these
two operations is the following: If we change one bit of plaintext, it will result in at
least two bits difference in the output of one S-box in the first round. The mixing
permutation will send these two bits to different S-boxes in the subsequent round,
resulting in 4 bits of difference at the end of round 2, then 8 bits of difference at
the end of round 3, etc. Of course, it cannot keep doubling like that, and there will
be some collisions along the way, where output bits of two different subblocks
are sent to the same subblock. But the net effect of all of this should be that
changing one bit of a plaintext block will on average change about half the bits
of the resulting ciphertext block. This is called the avalanche effect. As a result,
local alterations to a block are diffused throughout the block. This also shows
that the cipher requires a relatively large number of rounds to achieve this kind of
thorough mixing.

You can see from even this brief description that the design of a round requires
some intricate engineering, and is not a question of choosing something really
confusing-looking at random.

AES is a variant of the substitution-permutation network idea. In AES, all
the S-boxes are the same. The mixing permutation step in each round is divided
into two phases: In the first phase (ShiftRows), the 16-byte state is represented
as a 4 × 4 array of bytes, and each row of this matrix is cyclically shifted. In the
second phase (MixColumns), the state is represented as a 32 × 4 matrix of bits,
which is multiplied on the left by a particular 32× 32 matrix of bits, with addition
being done modulo 2. This is not precisely a permutation of the bits, so in this
respect, the description differs from that of the generic substitution-permutation
network. There are ten such rounds, with the last round being slightly different
from the earlier ones.

An very detailed description is given in the textbook, along with some of the
mathematics behind the construction of the various components.

3.2 Baby block cipher
Ignoring the admonitions not to design my own block cipher, I applied several of
the design principles above to create a cipher with a 16-bit block size and key size.
Obviously 16 bits is too small for any practical security, but it will enable you to
perform several simple experiments on the homework assignment. No guarantees
are made as to the soundness of the design, and I invite you to try other forms of

13



Figure 9: One round of AES-128. All the S-boxes are the same, and the mixing
permutation is replaced by a permutation of the bits followed by a linear trans-
formation.

14



cryptanalysis that will break this cipher faster than a brute-force attack.
The block cipher is constructed as a substitution permutation network. There

are five rounds. The key-scheduling algorithm is as follows: Let’s represent the
original 16-bit key as 4 hex digits. For example, suppose it is

a30e.

This is the round key for the first round. The round keys for the next four rounds
are obtained by cyclically permuting these hex digits:

ea30

0ea3

30ea

a30e

(In particular, the round keys for the first round and the last round are the
same.)

Each round operates on a 16-bit state. At the start of the algorithm, the state
is the plaintext block, and at the end, it is the ciphertext block.

The first phase of each round is the AddKey phase, where the round key is
XORed with the state to produce the new state.

The second phase is the Sub phase: The state is split into four 4-bit chunks.
Each chunk represents an integer in the range 0,..,15. It is replaced by another
integer in the same range using the permutation.

[11, 13, 7, 12, 3, 6, 10, 1, 14, 0, 9, 8, 15, 4, 2, 5]

In other words, suppose the state is 287a. The permutation replaces 2 by 7, 8 by
14 (e), 7 by 1, and a (10) by 9, so the new state is (in hex) 7e19. Observe that all
four S-boxes are the same.

The final phase is the Mix phase, where the bits of the state are permuted
according to the permutation

[5, 8, 0, 15, 11, 7, 2, 13, 14, 10, 1, 4, 12, 9, 6, 3]

Let’s see what this does with our example above. The state at the end of the
Sub phase of the round was 7e19 = 0111111000011001 in binary. The new state
will consist of bits 5, 8, 0, 15, etc. of this binary string, in other words.

1001101000111011 = 9a3b.

15



I have provided an implementation in Python. The default encryption function
just takes the key and plaintext as arguments in the range 0,..,65535 and returns
the ciphertext block as an integer in the same range. It’s worth seeing what hap-
pens when you use a smaller number of rounds, so there is an optional keyword
argument numrounds. There is another optional keyword argument verbose
of boolean type, that lets you see how the state is transformed in each phase of
each round. For example

encrypt(2345,24680,numrounds=2,verbose=True)

produces the following output:

plaintext
0110 0000 0110 1000
Round 1
Round Key 0000 1001 0010 1001
Add Key
0110 1001 0100 0001
Sub
1010 0000 0011 1101
Mix
0011 1011 0100 1000
Round 2
Round Key 1001 0000 1001 0010
Add Key
1010 1011 1101 1010
Sub
1001 1000 0100 1001
Mix
0011 0000 0001 1101
12317

16


