
CS3381-Cryptography

Lecture 4: Bits and bytes; One-time pad revisited; Stream ciphers

September 12, 2014

1 Binary encoding
Computers, of course, do not use a 26-letter alphabet to represent the data they
manipulate. They employ the 2-letter alphabet {0, 1} of bits, and these bits are
typically grouped into 8-bit bytes. We now view our encrypted data as consisting
of sequences of bits. Addition mod 26 is now replaced by addition mod 2, which
we denote ⊕:

0⊕ 0 = 1⊕ 1 = 0, 1⊕ 0 = 0⊕ 1 = 1.

‘Addition mod 2’ reflects a number theory view of this operation. If you think
of it in terms of boolean logic, ⊕ is the exclusive-or (XOR) operation.

When we have two bit sequences of the same length, the⊕ operation is applied
bit by bit, for example:

011011⊕ 101101 = 110110.

This operation is commutative and associative, and also satisfies

v ⊕ v = 00 · · · 0,

for any bit string v.
It is also helpful to have notation for concatenating sequences of bits. It is

somewhat standard in the subject to use || for this, although I don’t think our
textbook uses this notation.

011011||1011 = 0110111011.

There are lots of ways to write sequences of bytes. We can view each byte as
an integer in the range 0..255, for instance:

1

20, 169, 146, 156, 39, 131, 19, 176, 44, 85, 215

Often we are less interested in these numerical values than in the actual pattern of
bits, so we can represent the same sequence directly in binary form, here grouped
into to 8-bit blocks:

00010100 10101001 10010010 10011100 00100111 10000011
00010011 10110000 00101100 01010101 11010111

Such bit strings are very difficult to read, so it is more convenient to represent
each byte as two hexadecimal digits. (Each of the hex digits 0, 1, . . . , 9, a, b, . . . f
represents one of the 16 different sequences of 4 bits.) The sequence above is
represented in hex as:

14 a9 92 9c 27 83 13 b0 2c 55 d7

It is useful to have a more compact text representation of bit strings. Every
printable character has a one-byte ASCII code, but not every byte value represents
a printable character, so a typical string of bytes cannot be represented naturally
in text. Instead, we use the following scheme: The lower-and upper-case letters
along with the digits give us 62 different characters. If we throw in two more (+
and /) we get 64 = 26, so we can represent each 6-bit block by a single character.
A problem arises because the number of bits in a sequence of bytes is typically not
divisible by 6. In this case either two or four zero bits of padding are added before
encoding to make the number of bits divisible by 6, and ‘=’ or ‘==’ is appended
to the string, depending on how much padding was added. Here is the base 64
representation of our example—since it contains eleven bytes, there are 88 bits.
Two zero bits were added to make the total divisible by 6, so a single ‘=’ appears.

FKmSnCeDE7AsVdc=

2 The One-time Pad, revisited
Both the key and the plaintext are sequences of bytes of the same length. Encryp-
tion is no longer addition mod 26, but addition mod 2:

E(k,m) = k ⊕m.

Since addition and subtraction mod 2 are the same operation, decryption is iden-
tical to decryption:

D(k, c) = k ⊕ c.

2

The one-time-only principle looks like this: If we encrypt two different plain-
texts with the same key,

c1 = k ⊕m1, c2 = k ⊕m2,

then
c1 ⊕ c2 = m1 ⊕m2,

since the term k ⊕ k is all zeros. If at some later date we learn the value of one of
the plaintexts, say m1, then we have

c1 ⊕m1 = k,

and we recover the second plaintext

c2 ⊕ k = m2.

Even without complete recovery of m1, the re-use of the key leaks a lot of information—
we know exactly where the two plaintexts are the same, which could tip us off to
the nature of the message.

3 Stream ciphers
The random-number generator built into Python (and nearly every other program-
ming environment) provides a method for producing an arbitrarily long stream of
seemingly random bits by ‘seeding’ the random number generator with a short
key. The code below carries this out. The function getrandbits is a standard
library function in the module random that generates a desired number of bits
from the built-in random number generator. The result is given as a Python long
integer. The module bytestuff contains functions for converting sequences of
bytes between different representations and carrying out the xor operation.

import bytestuff
import random

def otp_encrypt(k,s):
random.seed(k)
v=random.getrandbits(8*len(s))
u=bytestuff.long_to_bytes(v)
return bytestuff.xor(u,s)

3

The general idea is that the random number generator is an algorithm that
takes reasonable-length keys k ∈ K and produces ‘random’ strings of bits some
large length L. That is, the algorithm computes a function

g : K → {0, 1}L.

Encryption and decryption are then done just as with the one-time pad. If m is a
string of L bits then

E(k,m) = D(k,m) = g(k)⊕m.

Such a setup is called a stream cipher, and the function g is called a pseudo-
random number generator. Here k of course is the key, and the long string g(k) is
called the keystream.

We have proved that such a system cannot have perfect secrecy, because we
are using relatively short keys to encrypt long messages. But it is possible that
if the key k is long enough to resist brute-force searching, such a scheme will
be computationally secure. (However, see below concerning the security of this
particular example!)

In a typical stream cipher, a large state vector is maintained, There is an al-
gorithm that updates the state and emits one bit of output. Prior to encryption,
the secret key k shared by Alice and Bob, is concatenated to another sequence of
bits IV called the initalization vector, and the result IV ||k is used to initialize the
state. Let us suppose the plaintext m is N bits long. The state is then updated N
times, producing the keystream s of N bits. Alice computes c = s⊕m and sends
Bob IV ||c. Note that the IV is sent in the clear: it is used to help randomize the
initial state so that the same keystream does not appear twice.

Bob on his end takes the IV, concatenates it to the secret key k, and initializes
the state. He then updates the state N times, which provides him with a copy of
the keystream s. He now computes

s⊕ c = s⊕ (s⊕m) = (s⊕ s)⊕m = 0⊕m = m

to recover the plaintext. In short, this is a mechanism for simulating a one-time
pad using a short key k.

In our example above, initializing the state is handled by the function random.seed,
and updating the state and obtaining keystream bits by random.getrandbits().
No initialization vector appears in the example, but it is easy enough to modify
it so that the value used to reseed the generator is split into two components.

4

The resulting stream cipher, however, is highly insecure, and in fact you should
never design a stream cipher using a system random number generator! Such
random number generators are designed to produce output that is random-looking
to various statistical tests of randomness, and therefore useful for simulation and
modeling. But the problem is that such generators are also predictable: If you
have a modest number of bits of the keystream, it is possible to recover the in-
ternal state of the generator, and predict all future bits of the keystream. (In the
Python random number generator, the state is about 80 bytes long. As it turns
out, if you know about 80 bytes of plaintext, you can xor with the ciphertext to
obtain 80 bytes of keystream. It is possible to use this to determine the initial state
of the generator and thus all subsequent bits of the keystream.) Much effort has
gone into the design of cryptographically secure random number generators that
cannot be predicted in this way.

Stream ciphers are typically very fast, so they have been incorporated in sys-
tems like wireless communication requiring rapid on-the-fly encryption and de-
cryption. The design of a good stream cipher is a challenging task. Recent stan-
dards using stream ciphers for DVD copy-protection (Content Scrambling Sys-
tem), cellphone encryption (ORYX and A5), and wireless network security (WEP
encryption) have all been shown to be insecure. There are ongoing efforts to pro-
duce secure stream ciphers. (See Project 2.)

4 LFSR Stream Ciphers
LFSR stands for ‘Linear Feedback Shift Register’. This is a scheme for creating
a shift cipher that can be implemented very rapidly in hardware. As we’ll see,
stream ciphers based on LFSRs are very insecure, but they are a core element of
more secure designs.

The state consists of a sequence of m bits

sm−1sm−2 · · · s0.

Each time the state is updated, a new bit is computed by XORing several of the bits
of the present state. This new bit s is the output bit—the next bit of the keystream.
The new state is

ssm−1 · · · s2s1.

That is, all the bits of the original state are shifted right, and the new bit s is shifted
in from the left. (It is probably more common in discussions of LFSR to treat s0,

5

rather than the new bit s, as the next output of the register. Bit s will then appear
as the (m+1)th output, after it has been shifted all the way to the right. By treating
things in this slightly different fashion, we are just skipping the first m bits of the
output.)

Here is an example with 5 bits. The updating function is given by

s = s2 ⊕ s0.

If we start in the state 01100, the subsequent states are

10110
11011
11101
01110
10111
01011
10101
01010
00101
00010
00001
10000
01000
00100
10010
01001
10100
11010
01101
00110
10011
11001
11100
11110
11111
01111
00111
00011
10001

6

11000
01100

If you inspect this list carefully, you’ll see that all 31 nonzero 5-bit patterns
appear in it, each one exactly once. The sequence of leftmost bits is the keystream
generated by this LFSR.

In an LFSR, we always require that at least one of the ‘tapped’ bits (the bits
that are being XORed together) is the rightmost bit s0. This being the case, if a
state has at least one nonzero bit, the next state cannot consist entirely of zeros
(why?). Thus as long as we start in a nonzero state, every subsequent state will be
nonzero. If we have m bits in the register, there are thus a total of 2m− 1 possible
states. This means that after at most 2m − 1 updates, the states will repeat, so the
LFSR keystream is periodic. It is desirable to have the period as long as possible,
so as to have the least amount of repetition in the keystream. (There is a good deal
of mathematics behind how to choose the tapped bits so as to obtain the maximum
period.) In our example above, we get the maximum period 25 − 1 = 31.

For such a generator, if we know m successive bits of the keystream, we can
completely recover the original state. Essentially this involves solving a system of
linear equations using addition mod 2, but the equations take on a particularly sim-
ple form. Let’s do this with our 5-bit example. Suppose the state was s4s3s2s1s0,
and the next 5 bits of the keystream are s5, s6, . . . , s9. Then we can write

s5 = s0 ⊕ s2

s6 = s1 ⊕ s3

s7 = s2 ⊕ s4

s8 = s3 ⊕ s5

s9 = s4 ⊕ s6.

Now if we know the values of s5 through s9, then we can substitute these in the last
two equations and find s3 and s4 immediately. We can substitute these new values
in the second and third equations and find s1 and s2. Finally we can substitute s2
in the first equation and find s0. For example, if the next 5 bits of the keystream
are 1,1,0,0,1 then we have

0 = s3 ⊕ 1, 1 = s4 ⊕ 1,

which gives s3 = 1, s4 = 0. Substitution into the second and third equations gives

1 = s1 ⊕ 1, 0 = s2 ⊕ 0,

7

so s1 = s2 = 0. The first equation is now

1 = s0 ⊕ 0,

so s0 = 1. The entire state is thus recovered as 01001. You can see in the tab-
ulation above that the first 5 output bits (leftmost bits) after 01001 are indeed
1,1,0,0,1.

What does this imply about using LFSRs as stream ciphers? Of course, 5 bits
is not a reasonable size state, but suppose we built a generator with maximal pe-
riod and 80 bits of state. Let us assume that an attacker Eve knows the recurrence
relation used to generate the keystream from a state (Kerckhoffs’ principle) and
knows some bits of the keystream. (This can be determined if Eve knows some
plaintext.) Here it is impossible to brute-force guess the state that leads to a se-
quence of keystream bits. But if Eve knows 80 consecutive keystream bits, then
she can solve the underlying system of 80 equations quite easily and recover the
state. So by itself, this is a very bad cipher.

On the other hand, a widely-used idea is to build stream ciphers by combin-
ing a few LFSRs in a nonlinear fashion, for instance through ANDs and ORs of
several registers of different sizes.

8

