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Lecture 3: One-time Pad, Perfect Secrecy, and Practical Security

September 8, 2014

1 One-time pad

Suppose we use the Vigenere cipher with longer and longer keys. The farthest we
can go with this is to make the key as long as the plaintext, so instead of many
repetitions of the short key you have a single occurrence of the long one. Here
is an example with the plaintext “LAUNCHTHEATTACK” and key “NOWIS-
THETIMEFOR”.

L AUNGCH
N OWTI ST
Y O Q VU A

T H E A
H E T 1
A L X 1

T
M
F

X m =
o >
lolloNe!
o = R

This is called the one-time pad, or Vernam cipher.

The attack on Vigenere does not work at all here. With no repetition of the
keyword, our method of inferring the key length is not applicable. If we know
in advance that the key has the same length as the plaintext, the method for de-
termining the key is of no use, since we would begin by partitioning the text into
subtexts, each of which has only one symbol. We would conclude in every case
that the plaintext is “EEEE...”!

In fact, by adjusting the key, we could get the same ciphertext with any plain-
text of the same length; for example.
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Thus the ciphertext does not help us at all.



2  What’s ‘one-time’ about the one-time pad?

If you use the key in a one-time pad to encrypt two different plaintexts, then the
resulting ciphertexts differ in exactly the same places, and by exactly the same
amount. (The same is true of the Vigenere cipher, which is a special case of the
one-time pad.) If one of the two plaintexts is later recovered, then we obtain the
key itself, and thus the second plaintext, and all other plaintexts that are encrypted
using the same key. Thus the key in a one-time pad can never be re-used.

3 Perfect secrecy

Intuitively, the ciphertext obtained with a one-time pad gives away no information
about the plaintext, except for its length. This property (which we have formulated
only vaguely) is called perfect secrecy.

To formulate a precise definition of perfect secrecy, imagine the following
scenario. We intercept a ciphertext ¢, and we suspect that it is either the en-
cryption of ‘ATTACKATTHEFIRSTOPPORTUNITY’ or of ‘SURRENDERAS-
SOONASYOUAREABLE’, but do not know which of these two plaintexts is the
right one. The ciphertext leaks some information about the plaintext if it allows us
to say which of these two plaintexts is more likely. We say that encryption scheme
has perfect secrecy if for all plaintexts my, mo, and all ciphertexts c, we have

Priex[E(k,m1) = c| = Prgex|[E(k, ms) = ¢].

Here the probabilities are assigned based on choosing the key & uniformly and at
random from the set [Cof all possible keys. (We assume here that the set M of all
possible plaintexts consists of strings of some fixed length, and that ¢ belongs to
the corresponding set M’ of possible ciphertexts.)

We will prove the following two facts:

1. The one-time pad has perfect secrecy.

2. If a cryptographic system has perfect secrecy, then |[KC| > | M]|. That is,
there are at least as many keys as possible plaintexts.

To prove item 1, note that for the one-time pad there is exactly one key £ out
of the |K| possible keys that encrypts m; to ¢, and similarly exactly one key &’
such that E(k’', ms) = c¢. So



Priexc|E(k,my) = ¢| = Pryex[E(k,m2) = ] = 1/|K],

which is what we wanted to prove.

For item 2, suppose || < |M]|. We’ll show that the cipher does not have
perfect secrecy. Choose any plaintext m; € M and a key k* € K. Set ¢ =
E(k*, my). Now decrypt ¢ under all possible keys. The resulting set of plaintexts
contains m, but since there are only || < | M| distinct keys, there must be some
element my € M that does not encrypt to ¢ under any key. Thus

Priex[E(k,m1) = ] 2 1/|K] > 0 = Pryex[E(k, m2) = ],

so we don’t have perfect secrecy.

4 If you can’t have perfect secrecy, what can you
have?

We have seen that if you want perfect secrecy, you have to have a key space that
is at least as large as the message space, and can never re-use a key. But the proof
of this fact also shows that it might be ok to settle for less than perfect secrecy.

Let’s go back to the scenario with the ‘ATTACK’ and ‘SURRENDER’ plain-
texts, and suppose we are using a cipher in which the number of keys is strictly
less than the number of possible plaintexts. The proof of item 2 that we gave
above provides a strategy for an eavesdropper Eve to guess which of the two mes-
sages was sent: She computes the decryption of the intercepted ciphertext ¢ under
all possible keys, giving a set S of possible plaintexts. Assuming that the plaintext
is one of these two messages, then at least one of my, ms will belong to S. If only
one of the two messages belongs to S, then Eve will know what the plaintext was.
If they both belong to .S, then Eve flips a coin.

How likely is it that this strategy succeeds?

Suppose the sender is sending the attack message. A key k is picked at ran-
dom, and the message is encrypted with %, giving the ciphertext c. There is at
least one plaintext message that does not encrypt to ¢ under any key (i.e., at least
one plaintext message that is not in ). The probability that this plaintext mes-
sage is the surrender message is thus at least 1/|M|. In this case Eve’s strategy
is sure to succeed. The probability that the surrender message is in S is at most
1 — 1/|M|, and in this case Eve’s strategy succeeds with probability 1/2. So if



the attack message was chosen, Eve succeeds with probability
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The probability is the same assuming that the surrender message was sent.

In practice, there are two problems with this approach. The first is that the
computational effort required is infeasible. There are 2627 possible plaintexts, so
there may be as many as 26°” — 1 > 103 different keys to try to construct the
set S. Second, the probability of success is only negligibly better than 1/2, since
s < 107

If we instead reduced the keyspace by a large factor—say, we used 20-letter
characters rather that 27 letters—then the probability that the encryption of the
surrender message is outside of S is now very high, and the attack is almost cer-
tain to succeed, but we still have the problem of the computational difficulty of
mounting it.

For a system to be secure, there should be no feasible algorithm that gives
more than a negligible advantage over random guessing.

Notions like ‘feasible’ and ‘negligible’ seem rather fuzzy, and are dependent
on the current state of technology. It is probably safe to say that an algorithm
requiring 2% > 10% steps is infeasible, and that a probability of 275 is negligible.
Computer scientists often use the following definition as a stand-in for feasibility
of an algorithm: A feasible algorithm is one that has a running time that grows as
a polynomial function of its input size (e.g., running time N? on inputs of length
N, rather than exponential run times like 2/V.) This connects cryptography with
computational complexity theory. Unfortunately, we do not know how to prove
that a given problem has no polynomial-time algorithms (this is one of the biggest
unsolved problems in mathematics!) There are some candidate problems that are
widely believed to have no polynomial-time algorithm, and right now the best we
can do is prove that if there were efficient attacks on a cryptosystem, then there
would be efficient algorithms to solve these problems. Such a result is taken as
evidence that the system is secure. We will see this approach later when we study
cryptographic systems whose security rests on the difficulty of factoring an integer
into its prime factors.



