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This describes some cryptographic systems in use before the advent of com-
puters. All of these methods are quite insecure, from the modern standpoint, but
they illustrate some important principles.

1 Caesar Cipher (Shift Cipher)
This method was attributed to Julius Caesar (1st century BC) by Suetonius in
Lives of the Twelve Caesars (2nd century AD). As crude as it is, the basic idea
of a shift cipher reappears in the Vigenère Cipher and the one-time pad that we
discuss further on, and (with a 26-letter alphabet replaced by a 2-letter alphabet)
in modern stream ciphers.

Each letter of the alphabet is identified with a number in the set {0, 1, . . . , 25}.
SoA is 0,B is 1, etc. The key is also an integer k ∈ {0, 1, . . . , 25}. The encryption
algorithm proceeds letter by letter, replacing each letter j of the plaintext by j +
k mod 26. The decryption algorithm is the same, using −k mod 26 in place of k.
Example. The plaintext “ATTACK AT DAWN” is identified with the sequence of
numbers

0, 19, 19, 0, 2, 10, 0, 19, 3, 0, 22, 13

(In this and the next two examples, we eliminate the spacing between words.) The
encryption with key k = 9 is then

9, 2, 2, 9, 11, 19, 9, 2, 12, 9, 5, 22

which is transmitted as
JCCJLTJCMJFW.
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The recipient, to decrypt, turns this back into the corresponding numerical
sequence and then adds −9 mod 26 = 17 to decrypt.

In the mathematical language we use to describe cryptosystems, the encryp-
tion of individual characters is given by

K =M =M′ = {0, . . . , 25},

E(k,m) = (m+ k) mod 26,

and the encryption of a sequence

m1m2 · · ·mr

of characters by

E(k,m1 · · ·mr) = E(k,m1) · · ·E(k,mr).

Decryption is the same as encryption, with the encryption key replaced by its
additive inverse:

Dk = E−k mod 26.

Security. If an attacker suspects that this method was used, the cipher is broken
(without a computer!) by a brute-force ciphertext-only attack, since there are only
26 keys, and in all likelihood only of the 26 decryptions will make sense. (What
about a known-plaintext attack?)

2 Monoalphabetic Substitution Ciphers
Here the key is a random substitution of one letter by another; for instance ‘A’
by ‘F’, ‘B’ by ‘T’, etc. This is a permutation of the 26 letters: if two letters are
different then their encodings in the key also have to be different.
Example. The plaintext is

LAUNCH THE ATTACK AT DAWN ON MONDAY UNDER CLEAR SKIES.
HOLD YOUR POSITION IN LIGHT RAIN. RETREAT IN HEAVY RAIN.

Suppose the key is the permutation
RWTPEUSQNLOFIKCVGBHZDXAYMJ of ABCDEFGHIJKLMNOPQRSTU-

VWXYZ; that is, ‘A’ will be encrypted by ‘R’, ‘B’ by ‘W’, etc.
The ciphertext is then
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FRDKTQZQERZZRTORZPRAKCKICKPRMDK
PEBTFERBHONEHQCFPMCDBVCHNZNCKN
KFNSQZBRNKBEZBERZNKQERXMBRNK
The recipient decrypts using the identical algorithm, with the key replaced by

the inverse permutation
WROUELQSMZNJYIKDHAGCFPBVXT

Formal description. K is the set of permutations of {0, 1, . . . , 25}, that is, the set
of one-to-one functions

π : {0, 1, . . . , 25} → {0, 1, . . . , 25}.

M =M′ = {0, 1, . . . , 25}. Encryption of individual characters is given by

E(π,m) = π(m),

and encryption of sequences of characters is obtained, as above, by concatenating
the encryptions of individual characters. Decryption is the same as encryption,
with the key π replaced by the inverse permutation π−1.

Observe that the Caesar cipher is just monoalphabetic substitution with a very
restricted set of keys.
Security and cryptanalysis The number of keys is the number of permutations
of a 26-element set, namely

26! ≈ 4.03× 1026.

A brute-force attack is not feasible on a key space this large. But this kind of
puzzle appears in the newspapers, and people solve them by hand. (To be fair, the
newspaper versions include word boundaries.) How?

There are two serious weaknesses: First, the frequency distribution of letters
in English is very uneven, and this same uneven distribution is present in the
ciphertext. (Figure 1.)

Thus in a long ciphertext, one might well guess that the most frequently oc-
curring character is the encryption of E.

Second, each character of ciphertext depends on only one character of plain-
text and one character of the key. Thus when one part of the key is guessed
correctly, it is possible to build on this progress to get other parts of the key. In
better systems, changing any piece of the key or the plaintext should completely
change the ciphertext.

Our short English plaintext does not exactly reflect these distributions—for in-
stance A (12%), I (9%), N (11%), T (9%) all occur more frequently than E (8%).
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Figure 1: Relative letter frequencies in English. The six most frequently occurring letters
ETAOIN account for about 44% of all letters in a large corpus.

But the frequency profile is close enough to make some plausible guesses, and
build on these to a complete decipherment. Using information about the relative
occurrences of 2-, 3- and 4-letter sequences speeds the process. (See the text-
book’s description, the posted extract from Poe’s story ‘The Gold Bug’, and the
first posted project.)

3 Vigenère Cipher (polyalphabetic substitution ci-
pher)

This dates to the 16th century. (The actual inventor was named Bellaso; Vigenère
invented a related system, but the misattribution has stuck.) It was widely thought
to be essentially unbreakable by commentators writing as late as the early 20th
century, but successful attacks were discovered by researchers in the 19th century.

Instead of using a single shift value, as in the Caesar cipher, the Vigenère
cipher uses different shift values for different letters of the plaintext. The key is
a string typically between 5 and 10 letters long. The shift values are given by the
usual integer encodings (0 for A, 1 for B, etc.) of the key characters.
Example. Here the key is

PIGSTY
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and the plaintext is
LAUNCH THE ATTACK AT DAWN ON MONDAY UNDER CLEAR SKIES.

HOLD YOUR POSITION IN LIGHT RAIN. RETREAT IN HEAVY RAIN. SEND
ADVANCE SCOUTING PARTIES TO VERIFY ESCAPE ROUTES.
The table below shows the encryption of the first 15 characters. This is just addi-
tion of each column mod 26, using the integer encodings of the characters.

L A U N C H T H E A T T A C K
P I G S T Y P I G S T Y P I G
A I A F V F I P K S M R P K Q

Decryption is done in exactly the same way, subtracting the shift value instead
of adding it.
Formal Description Here

K =M =M′ = {0, 1, . . . , 25}k,

i.e., sequences of k characters, where k is the length of the key. Encryption is
given by

E(s1s2 · · · sk, p1p2 · · · pk) = c1 · · · ck
with

ci = (pi + si) mod 26.

Decryption is the same, with s1, . . . , sk replaced by −s1 mod 26, . . . ,−sk mod
26.

Security and cryptanalysis. Using several different shift values smooths out the
uneven distribution that we get from using a single shift or a single substitution
alphabet, so the frequency distribution of letters in the ciphertext is much more
uniform. Another advantage over the monoalphabetic substitution was that the
short key could be easily memorized.

With a key length of 9, the number of keys is about 5.4 × 1012. Even with
computers, checking every key is a stretch, but can be carried out. In the 19th
century environment, of course, a brute-force attack was absolutely out of the
question.

There is an effective ciphertext-only attack based on a two-step analysis. The
first step determines the key length, and the second determines the key. The idea
is this: In the first phase, for i = 2, 3, . . . , 10, compare each ciphertext letter
to the letter i characters ahead, and count the number of times these two letters
match. The value of i that gives the largest number of matches is probably the key
length. Once the key length is established (let’s suppose it is 6) we can partition
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the ciphertext into 6 subtexts, each of which is the encryption of plaintext using
a single Caesar shift value. We can examine all 26 possible decryptions for each
of these subtexts and choose the one that most closely resembles the distribution
statistics for English.

Here is a precise mathematical description of the attack, along with an expla-
nation of why it works.

We will use the following useful fact: If (a1, . . . , an) is a sequence of real
numbers and (b1, . . . , bn) is a permutation of the same sequence, then

n∑
i=1

a2i ≥
n∑

i=1

aibi.

For example, look at the sequences (2, 1, 3, 4) and (4, 3, 2, 1). Then

42 + 32 + 22 + 12 = 30 > 21 = 2 · 4 + 1 · 3 + 3 · 2 + 4 · 1.

Let’s denote by Pa the probability that a letter chosen at random from English text
is an ’a’, and similarly Pb, Pc, etc. Then the probability that two letters chosen
independently at random from English text are the same is

P 2
a + P 2

b + · · ·+ P 2
z .

The same will be true if we choose two letters independently at random from En-
glish text that has been encrypted by a shift cipher. What if we make the first se-
lection from text that has been encrypted by a shift cipher using one shift amount,
and the second from text that has been encrypted with a different shift? In this
case the probability that the two letters are the same will be

PaPa′ + PbPb′ + · · ·+ PzPz′

where (Pa′ , Pb′ , . . . , Pz′) is some permutation of the original probabilities. Be-
cause of our inequality, we should expect a higher value when the same shift value
is used for both selections than when different shift values are used. Observe that
this would not work at all if the letter frequencies were uniformly distributed,
since we would then get roughly the same value for both sums.

To apply this idea, align the ciphertext with itself advanced i characters for
i = 2, 3, . . . , 9 characters (as high as the key length is likely to be) and count
the number of matches. The table below shows the alignment for the first few
characters of ciphertext in our example, with i = 4, 5.
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A I A F V F I P K S M R P K Q
A I A F V F I P K S M

A I A F V F I P K S
Count the number of matches for each alignment (there are three matches for

i = 5 in this example): By the above analysis, the alignment that gives the largest
number of matches should give away the length of the key, although we would
need longer samples than the one shown in the diagram above.

In the second step we use the information about the key length (let us suppose
it is 6) to divide the text into 6 subtexts: the first subtext consists of the 1st, 7th,
13th, etc. characters, the next consists of the 2nd, 8th, 14th, etc., characters, and so
on. Each of these subtexts represents a selection of English characters encrypted
with a single shift. It remains to find the shift associated with each subtext.

For each subtext we compute the vector

(fa, fb, . . . , fz),

giving the number of occurrences of a, b, c, etc.. These should be roughly pro-
portional to the probabilities Pa, Pb, . . . , but shifted: for instance, we would have
(fa, fb, . . . , fz) is approximately a multiple of (Py, Pz, Pa, . . . , Pw, Px) if the shift
value was 2. We use an estimate of the probabilities Pa, Pb, . . . , Pz and compute
each of the sums

faPa + fbPb + · · ·+ fzPz,

faPb + fbPc + · · ·+ fzPa,

· · ·

faPz + fbPa + · · ·+ fzPy.

Again our inequality suggests that the largest of these gives the correct shift for
each subtext, and thus reveals the key. An example is worked out in detail in the
Python notebook posted on the course website.
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