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Abstract 
Data integrity policies often require that quality and integrity metadata be 
generated and communicated to potential users.  However, in data warehouses, 
federations, and other multi-tier databases, administrators at different tiers use 
different schemas. Data at the upper tier is derived from the lower, so we consider 
the upper tier’s tables to be views, derived by SQL-like expressions. 
Unfortunately, an assertion about some granule in the sources (a table, column, or 
cell) is often meaningless to view users, and vice versa. An understanding of the 
SQL view gives intuitive guidance for propagating such metadata, but not explicit 
semantics. 

It appears feasible to create a system that drastically reduces the skill and labor 
required for propagating metadata and events between the tiers. We show many 
examples where, based on the view query and the metadata on the relevant sources, 
one can automatically generate useful propagation rules. Propagation downward 
from views to sources is also handled. Our approach is to automate the easy cases 
(which we expect to be quite common), and to assist on harder cases. Knowledge 
of specific metadata types or query operators can be supplied incrementally. If the 
view’s query expression is difficult, one may compose the propagation rules from 
its constituent operators.  
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1 INTRODUCTION 
 

A data integrity strategy is likely to involve large amounts of metadata (e.g., 
quality measures, constraints) plus operations and events (e.g., corrections, error 
messages). This information helps users employ the data correctly, and helps 
managers plan data quality improvements. Our work explores techniques for 
coordinating and propagating such information in a multi-tier database. 

A multi-tier database is one that provides several different virtual or physical 
databases, each one derived from the one below. The phenomenon takes many 
forms. For example, a set of view tables can be used to insulate applications from 
stored tables that have been partitioned or denormalized, and which change as the 
workload changes. A federated database provides a virtual schema above multiple 
sources. A data warehouse gathers and transforms data and stores it in a separate 
server; this can be seen as computing a materialized view (subject to delays in 
propagating source updates). Web-oriented distributed systems often have tiers of 
objects derived from each other. 

Because the data in the tiers of a multi-tier database are related, it is important that 
the tiers maintain full and consistent integrity information.  However, integrity 
metadata specified at a tier is usually local to that tier and is not propagated to 
other tiers.  The reason is that users and administrators lack the time, motivation, 
the skill in understanding data derivations (e.g., SQL), or the business knowledge 
needed to propagate each item of new or changed metadata to all interested parties. 
One cannot ask administrators to write a separate piece of code for each metadata 
type on each attribute, let alone for each row or cell that has metadata attached.  

The goal of our research is to extend the ability of database systems to support tiers 
as views.  Users at any tier should have the illusion that their database is single-
tier, though perhaps having multiple administrators.  In such a system, all relevant 
metadata would be propagated to each tier, and made accessible in terms of the 
schema at the tier.  A simplified picture of the system appears below in Figure 1.  

The metadata-propagation problem is comparable to the well-known problem of 
view update semantics (Keller, 1986) that has daunted database theorists. 
Consequently, we acknowledge that a fully automatic solution is not possible in all 
cases.  Our intention is therefore to automate the easy cases, and provide 
automated assistance for the hard ones. 

There are numerous types of metadata, many of which are domain-specific.  
Consequently, the kinds of metadata (and the options for how they will be treated) 
cannot be provided as a turnkey system.  Instead, the system should permit 
extensions by tool vendors, customer organizations, and even business-oriented 
data administrators. To this end, we propose a framework that allows semantic 
choices to be supplied as small chunks of knowledge, rather than modifications to 
a query processor. 
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Figure 1: System Overview 

This paper is organized as follows.  Section 2 discusses the need for integrity 
information in multi-tier databases, and how this information can be used 
effectively across tiers.  Section 3 elaborates our proposed framework, and 
provides examples illustrating its components and its use.  Section 4 provides 
conclusions, plans for future work, and some open issues in this area.  Some 
preliminary results from this paper appeared in (Rosenthal, 1997). 

 
2 DATA INTEGRITY AND METADATA 
 
2.1 Data integrity requirements of large databases 
 
Larger, more complex databases tend to require greater attention to data integrity 
and other controls, beyond the mechanisms used in simpler systems. Multi-tier 
databases, especially those that integrate data from many sources, are no exception. 
For example, the data warehouse literature reports that data integration and “data 
scrubbing” consume as much as 60-80% of the warehousing effort (Inman, 1996), 
(Robinson 1996). 

Base Tier: Ordinary Database 
Schemes of user relations 
Instances of user relations 

  Ancillary M’Data and Operations 
Operations 
   (update, monitor changes…) 
 Other  metadata 
   (constraints, security, data quality…)
 

View Tier: Ordinary Database 
Schemes of user relations 
Instances of user relations 

  View Tier: Ancillary Data, Opns 
 Operations 
   (update, monitor changes…) 
 Other  metadata 
  (constraints, security, data quality…)
 

SQL Views 

Meta-models  
(extensible, shared by all tiers)  

 
for  ordinary data               for ancillary data  

       Table, Attribute, Key...             Error_bound, Credibility,
                                                        Read_Privilege, ... 
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Some of the reasons apply to any large system, regardless of architecture:  

• Manual checking cannot handle the volume either of existing data or of new 
arrivals.  

• Users’ access to databases was traditionally mediated by applications, which 
often included integrity protections and limited the data returned (thereby also 
enhancing security). Now easy-to-use ad-hoc query interfaces make it feasible 
for many users to bypass this mediation.  

• User bases are growing. A larger user base justifies greater expenditures.  
• Finally, the data and tool sets are valuable, and should be made available to a 

wide span of users.  Yet sensitive information will be withheld unless it can be 
protected. The larger scale of data and users (potentially thousands of data 
attributes and of users) makes security administration and enforcement serious 
problems.  

  
Some other factors have been observed (by us and others) to apply especially to 
mechanisms that provide integrated views across multiple sources: 

• Errors that went unnoticed when data was separate become painfully apparent 
when conflicting data is brought together. Improved data quality tests (e.g., 
consistency checks) may create a perception of decreased quality. 

• Users at view tiers are often less intimately familiar with the underlying source 
data, and hence less able to compensate for faults.   

• Warehouse users often use summary data (e.g., totals, averages), which may 
hide the underlying errors.  

• Data that was appropriate for its original purpose may not suit new goals, e.g., 
matching against other data sources. The variations among the sources’ 
attitudes, policies, and practices contribute to uneven quality. 

• In an integrated database, the source that gathers certain data may not be a user 
of that data. So there is no natural internal feedback to ensure quality. 
  

2.2 Uses of Propagated Metadata, Events, and Operations  
  
Metadata is stored in the database, and can be queried using standard data query 
languages (such as SQL).  The result of a query could include table references 
(“Which tables contain data supplied by Dow Jones?”), attribute references (“What 
attributes in the SUPPLIERS table have unreliable data?”), or data (“Which 
records in EMPLOYEE were last updated by user ‘billgates’?”).  This subsection 
discusses the ways in which users will want to access different kinds of integrity 
metadata.   

Data Quality 
Data quality metadata might describe a granule’s sources and processing history, 
its credibility, its error bounds (absolute or relative), and its availability (if 
connectivity is intermittent). Hundreds of other potentially useful types have been 
identified (Wand, 1996), so extensibility is essential. 
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End users and developers who work with view tables can use data quality metadata 
to select data to use (i.e., via query predicates that test quality information) and to 
interpret the data they do use.  In both cases, they want descriptions in terms of 
their familiar views, not of source tables. Hence we need to propagate quality 
information upward. 

Managers can use quality metadata to guide quality improvement, by comparing 
(in their native view) data quality with the business requirements for quality. When 
the existing quality falls short, the desired quality on view attributes needs to be 
propagated down to the source tables. That is, we want a “complaint” facility that 
propagates the complaints down to the correct source metadata. If other users 
should be made aware of the doubts (e.g., for scientific data or operational 
planning), shared complaints expressed against source data might then be 
propagated upward to other views. 

Integrity Constraints 
 
Today’s databases have many constraints defined on source tables. View users 
need to see them as constraints on view tables. Also, once a predicate is visible at 
both source and view tiers, it can be enforced at either place. Enforcing in clients 
permits faster notification of errors, and permits data entry when disconnected 
from the source databases.  

A radical alternative is to say that constraint administration should be done mainly 
at the view level, not at the source level. After all, business domain experts are 
more knowledgeable about constraints than the technicians who design source 
tables. Each expert might define constraints for a portion of the database, 
expressed in terms of user views (e.g., the portion that they are primarily 
responsible for populating, e.g., transport or finance).  Propagating these 
constraints down to source tables allows them to be enforced for all updates, not 
just updates through this view, and to use indexes maintained on the source tables. 
Also, constraints expressed on the source tables can propagate upward to other 
views. 

For downward propagation, constraint predicates on view tables can be seen as 
queries, so query processors can re-express them on the source tables. However, 
this translation may not identify constructs (e.g., key constraints) that are 
meaningful to users or that have efficient enforcement techniques. Also, one needs 
to ask whether the constraint should apply to all updates, or only those received 
through this view.  

Upward propagation is more complex.  Ideally, one could devise a set of view 
constraints equivalent to those on the sources. In practice, while some source 
constraints will be expressible as constraints on data in the view tables, others will 
be irrelevant to updates provided through that view schema, and still others will be 
relevant but will require data not visible in the view schema (as discussed under 
the next item). A reasonable compromise would be to propagate source constraints 
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upward to views wherever possible, and to indicate that further constraints are also 
enforced. 

Error Messages 
Trouble ensues when a view user’s update violates an integrity constraint that is 
enforced on source tier data. An error message should describe the violated 
constraint, but a message stated in foreign (source) terms may confuse and even 
anger view users.  To the extent possible, the violation should be explained in 
terms of view tables, even if detected at the source. 

This translation is easily automated for simple views, and when the constraint is 
expressible on information supplied with the user’s update.  However, some 
constraint violations involve data outside the user’s view. This raises user interface 
issues; perhaps one should describe the error both in hybrid terms and purely in 
source terms. The system should also check whether the view user was authorized 
to read the additional relevant data from the source; if not, there are difficult 
tradeoffs between integrity and confidentiality (Jajodia, 1995). 

 

3 A SYSTEM FRAMEWORK 
 
The previous section demonstrated the value of propagating metadata between 
different tiers in a database system.  This section describes a framework  (that is, 
standards, services, and a repository of meta-metadata) that semi-automatically 
produces propagation rules, and enables new knowledge about propagation to be 
added incrementally and easily. 

To understand the scope of this framework, suppose for a moment that a table at a 
view tier has just been defined in terms of some source tables.  The view definition 
language (e.g. SQL) does not specify any metadata for the view.  The framework 
therefore must do the following: 

• Determine the types of metadata that should be in the view. 
• Select “upward rules” (or provide the view creator with a choice of rules) that 

specify how view metadata values will be computed from source metadata, as 
well as rules that specify how the source metadata should change in response 
to changes in the view metadata (called “downward rules”). 

• Use these rules to answer user queries about the metadata, and to keep 
metadata values consistent between the two tiers. 

 

Our intention is for the framework to be an aid to data administration.   The rules 
chosen by the framework encode the semantics of the view, and thus ultimately 
require human assistance and verification.  The data administrator should always 
be able to override suggested rules or add new rules. Although our discussion 
focuses on metadata, one also wants rules that propagate operations and events. 
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The following subsections flesh out this approach.  Section 3.1 describes a 2-tier 
database for our running example.  Section 3.2 examines how the framework 
determines the kinds of metadata in a view.  Section 3.3 considers rules, and how 
they are used to compute metadata.  

3.1 A Running Example  
 
We shall illustrate the details of our framework using the following example.  The 
source-tier schema contains information about aircraft, their positions, and their 
scheduled flights.  Keys are underlined; FLIGHT.A_Id is a foreign key reference. 

AIRCRAFT(A_Id, Type, Capacity) 
POSITION(A_Id, LatLong, Speed_Mph, Height) 
FLIGHT(F_Id, A_Id, StartAirfield, EndAirfield, FuelNeeded) 
 

The view-tier schema contains three tables, defined as follows. 

Define view POSITION_DE_AVION as 
Select AvionNom=A_Id, JeSuisIci=LatLong, Vitesse_Kph=Speed_Mph*1.6 
From POSITION 
 
Define view AIRCR_FUEL as 
Select A.*, F.F_Id, F.FuelNeeded 
From AIRCRAFT A, FLIGHT F 
Where A.A_Id = F.A_Id 
 
Define view AIRFIELD_FUEL_NEEDS as 
Select Airfield=StartAirfield, TotalFuel=SUM(FuelNeeded) 
From FLIGHT 
Group by StartAirfield 

 

The view POSITION_DE_AVION renames POSITION attributes to French (or 
“franglais”) and converts Speed_Mph to kilometers. The view AIRCR_FUEL joins 
FLIGHT and AIRCRAFT, while AIRFIELD_FUEL_NEEDS computes the total 
amount of fuel needed for each airfield’s flights. 

3.2 Granules and their Properties 
 

Metadata on granules  
A granule is an identifiable subset of a database table to which metadata or 
methods can be attached, e.g., a table, column, row, cell value, or view.  Each 
piece of metadata associated with a granule is given a name, called a property.   

In our example, the granule POSITION might have a property Authorizations, 
describing the users authorized to access the table; the granule 
POSITION.Speed_Mph might in addition have the properties Credibility and 
AbsoluteErrorBound, denoting the fact that each data value in the column has the 
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same credibility rating and error bound.  Note that for the above examples, a value 
attached to a table or column granule describes each cell within it; other metadata 
types could describe properties more global to the granule. Values for specific 
granules override the wider-scope value. 

We simplify our presentation by assuming that all property values are stored in one 
global metadata table that has three columns: Granule, Property, and Value. Thus 
one of the above properties might be represented in the metadata table as the row 

(POSITION.Speed_Mph, Credibility, “Gary says 0.6”) 

In practice, this global table is likely to be a view that draws data from user data 
tables, CASE tool metadata tables, and system catalogs. However, a fuller 
treatment here would focus attention on irrelevant technical details (e.g., resolving 
inheritance and overriding, rules to propagate meta-metadata, and naming 
conventions for granules). 

Derivation Queries and Derivation Trees 
To generate candidate metadata for a view granule, we first gather the metadata on 
relevant source granules. The task of identifying these granules is fairly 
straightforward.  The basic idea is to exclude data and computation that are 
irrelevant to the view granule For a granule g of a view V, the initial derivation 
query (denoted idq(g,V)) is defined as follows: 

• If g is an attribute A (i.e., column), use “Select V.A From V”  
• If g is a cell, attribute A of row r, use “Select V.A From V where row_id = r” 
• If g is the entire view, use “Select * from V”  
 
Any query equivalent to idq(g,V) is called a derivation query, and denoted dq(g,V) . 
Query simplifications may be performed (e.g., replace V by its defining query, 
exploit integrity constraints). Algorithms developed for monitoring changes to 
views would seem to apply here, though we have not yet made specific 
connections. In particular, pushing projections down allows us to ignore metadata 
on attributes that are immediately projected away; selections allow us to ignore 
metadata on irrelevant cells. 

For example, consider the views defined at the beginning of this section.  Queries 
will be shown as trees, in relational algebra, and tree terminology will be used 
freely (e.g., calling the inputs of dq(g,V) the leaves of a derivation tree).  The 
derivation tree for POSITION_DE_AVION.Vitesse_Kph appears in Figure 2a; the 
derivation tree for AIRCR_FUEL.A_Id appears in Figure 2b.   

The derivation tree for a granule may be much simpler than the underlying view 
query.  When AIRCR_FUEL is projected solely on FLIGHT attributes, the join 
with AIRCRAFT is irrelevant (since the foreign key constraint implies that each 
FLIGHT matches exactly one AIRCRAFT). Hence the derivation query for 
AIRCR_FUEL.FuelNeeded (see Figure 2c) contains only the node for 
FLIGHT.FuelNeeded. This sort of reasoning would require skill and care from a 
data administrator, but is easy to automate. 
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Figure 2: Example Derivation Trees 

Suggested Granule Properties 
When the initial derivation query for a view granule g is simplified, what remains 
are the source granules necessary to compute g.  Thus it is not unreasonable to 
assume that the properties of the source granules will “filter up” to g. 

We express this intuition by defining the suggested set of properties for view 
granule g as {P| P is a property of a granule in a leaf of dq(g, V)} 
The data administrator is free to omit some suggested properties and add others.  In 
fact, the non-presence of a particular property in the view might be cause for a 
fruitful negotiation between the administrators of the two tiers. 

 

3.3 Propagation Rules and Property Value Computation 
 

Given a view granule g, the values of its properties will be calculated by assigning 
propagation rules (or just rules) to the operators in g’s simplified derivation tree.  
Informally, each rule specifies a function that propagates metadata up (or down) 
the derivation tree. This section describes the structure and administration of these 
rules, as well as the mechanism for using rules to calculate property values of view 
granules.  

Rules 
A rule has four components: a direction, a computation, a scope, and a strength.  
We discuss each component in turn, and then present examples. 

The direction of a rule is either “upward” or “downward”.  An upward rule uses 
the values of the leaf granules to calculate a property value for the result.  A 
downward rule uses the property value for a (single) view granule to calculate 
values for the leaf nodes.  A rule specified as “both” is shorthand for two rules, one 
for each direction. 

The computation of a rule is a function that determines how the output(s) will be 
calculated from the input(s). 
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The scope of a rule specifies when the rule is applicable to a granule. The scope 
specification makes it possible to define rules at the most general possible level, so 
as to promote sharing and better abstraction. In our scope, we can specify the 
tables, attributes, properties, and the atomic query operators to which the rule 
applies. 

The strength of a rule specifies the extent to which the system should automatically 
use it.  We currently have three possible values.  A definitive rule is to be applied 
automatically, without user interaction.  A default rule is to be preferred by the 
system, but is subject to user verification.  And a candidate rule is one of perhaps 
several equal possibilities to be presented to the user. More sophistication is clearly 
possible (e.g., overriding, removing candidates, dependence on user, type-
checking, etc.).  However, we chose to leave such enhancements until we have 
better experience with the simpler scopes. 

Examples of Rules 
The most generally applicable metadata-derivation rule is “do nothing” – that is, to 
pass the property value unchanged up (or down) the derivation query.  This rule 
seems always applicable to the RENAME operator, and often applicable to 
MULTIPLY.  (The property Credibility can pass through MULTIPLY unchanged, 
but AbsoluteErrorBound must scale proportionately.)  The following rules capture 
these observations: 

R1 Direction: both 
 Computation: output = input 
 Scope: operation=RENAME,  
  tables=ALL, atts=ALL, properties=ALL 
 Strength: definitive 
 
R2 Direction: both 
 Computation: output = input 
 Scope: operation=MULTIPLY( c ) 
  Tables=ALL, atts=ALL, properties=Credibility 
 Strength: definitive 
 
R3 Direction: upward 
 Computation: output = input * c 
 Scope: operation=MULTIPLY( c ) 
  Tables=ALL, atts=ALL, properties=AbsoluteErrorBound 
 Strength: definitive 
 
R4 Direction: downward 
 Computation: output = input / c 
 Scope: operation=MULTIPLY( c ) 
  Tables=ALL, atts=ALL, properties=AbsoluteErrorBound 
 Strength: definitive 
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There are many other rules of narrower scope.  We would hope that vendors and 
even user organizations would incrementally add these rules to their systems.  For 
example, for the SUM aggregation operator and the AbsoluteErrorBound property, 
a rule (with strength “default”) might multiply the input by the number of values 
being aggregated. 

Suppose we have probabilistic estimates of an attribute’s correctness (here, defined 
as the probability of being exactly right) and availability (for fault tolerance, the 
probability of receiving a response from the server that stores the information). 
Then to calculate the correctness and availability properties, one might multiply 
the values from the input properties, with strength “candidate”.   

Other rules might perform more subtle analyses. We create a property type 
Pedigree to capture how each input to a granule’s derivation affects the granule’s 
value. Consider the view AIRCR_FUEL, obtained by joining AIRCRAFT and 
FLIGHT on foreign key A_ID. Because of the foreign key constraint, only 
FLIGHT.FuelNeeded influences AIRCR_FUEL.FuelNeeded.  But the pedigree of 
AIRCR_FUEL.Capacity is more complex.  AIRCRAFT.Capacity determines the 
value, but since an aircraft could have an arbitrary number of flights, both 
AIRCRAFT.A_Id and FLIGHT.F_Id influence which tuples are present, and the 
number of duplicates. 

As a final example, when an operator combines two textual or Boolean fields, the 
result’s Credibility might be set to the minimum (or product) of the input values (if 
purely numeric), or one might concatenate the textual discussions of credibility. 

Invoking Propagation Rules 
Given property P of view granule g, its value is determined as follows.  The 
derivation query dq(g, V) is calculated.  For every operator in the tree, an 
applicable upward rule is chosen.  The computations of the rules are then 
composed to compute the value of the root node, which becomes the value of P. 

For example, consider the view granule POSITION_DE_AVION.Vitesse_Kph and 
its property Credibility.  The derivation query tree for this granule was given in 
Figure 2a.  We therefore need to choose an applicable rule for each of the two 
operators of the tree.  Using the rules defined in Section 3.3, we see that R1 is the 
applicable rule for the RENAME operator, and R2 is the applicable rule for 
MULTIPLY.  As both rules have the identity function as their computation, the 
result is that the value of Credibility is the same for this granule as for the granule 
POSITION.Speed_Mph. 

Now consider the property AbsoluteErrorBound for the same view granule.  We 
must choose rules for the same derivation tree applicable to this property.  The 
applicable rules are R1 for RENAME, and R3 for MULTIPLY.  The result is that 
the value for the property will be 1.6 times the value of AbsoluteErrorBound for 
POSITION.Speed_Mph. 

In addition to selecting upward rules for each view property, downward rules can 
also be selected (either automatically, or with assistance from the view creator).  
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By doing so, the view creator links the metadata at both the source and the view, so 
that changes at one tier can be propagated to the other. 

Administering Rules, within a Component Framework 
Managing the rule set includes creating and modifying rules, inspecting what rules 
apply, overriding or removing rules inherited from a wider scope, and selecting 
one of the candidate rules. The system should provide tools for performing all 
these tasks. Vendors, professional administrators, and power users need many of 
the same capabilities, so the tools should be part of the delivered system. 

Rule choice may depend on the derivation query’s logic, domain semantics, and 
organizational policy. Organizations could contribute domain-specific types and 
rules, and database administrators are able to add database-specific rules and 
override existing ones. Some specifications might be supplied when a new 
property or new derivation operator is defined. Others might be created when 
defining a view to serve a particular community or application. Simple tasks might 
be left to run-time users (e.g., confirming defaults, choosing among candidates).  

It is impossible to provide appropriate rules for all properties, through all possible 
atomic query operators (both SQL and user-defined), for all organizations.  A 
vendor of a propagation system could provide an initial set of useful rules. But as 
needs expand, both vendors and their customers will need to extend and customize 
the rule base. Thus, the system should be componentized, i.e., should allow simple, 
independent steps to extend the operators, properties, and rules. 

An important aspect of our framework proposal is that it is a component framework 
for propagation rules, i.e., standards and services that enable separately-provided 
components to work together.  The system framework would maintain a database 
of rules that is available to all tiers, and interfaces for inspecting, defining, 
modifying, and overriding rules. The framework also provides the facilities for rule 
invocation. Finally, to reduce semantic heterogeneity, a framework must define a 
set of fundamental properties (e.g., Credibility) and view-derivation operators (e.g., 
Select, Outerjoin), that all tiers would be encouraged to use. 

 

4   DISCUSSION, SUMMARY AND FUTURE WORK 
 
To manage integrity in a multi-tier database, we must propagate integrity metadata 
and events among the tiers. We have tried to illustrate several points: 

• In multi-tier systems, it is essential to propagate ancillary metadata. For each 
metadata or event type, one may want propagation options that are customized 
for particular databases, tables, columns, cell values or other groupings. Since 
every attribute (and many other granules) may be associated with several 
pieces of ancillary information, automated assistance is essential. 

• A framework can be constructed to help componentize propagation 
capabilities, enabling rules and knowledge to be supplied incrementally. The 
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framework would be employed at a variety of skill levels, e.g., to write new 
rules, to select appropriately from existing ones, or simply to execute a rule to 
see metadata from other tiers. 

• While the general problem of “first class” views is notoriously hard, the goal 
of providing assistance is attainable. By offering multiple candidate rules, we 
help administrators handle cases where no single rule applies universally. A 
small collection of heuristics, plus knowledge of query operator semantics can 
handle many views. 

• Propagation rules for complex queries can be composed from propagation 
rules of constituent operators, many of which will be simple. Propagating 
events may involve actions outside the database (e.g. “forward this request via 
email”). 

 
Our project (Managing Risk in the Data Warehouse) aims to provide the 
framework and simple components that handle some of the easy cases. More 
complex components (e.g., for complex derivation operators) would then be 
plugged in as researchers or vendors produced them. For example, research on data 
quality measures might lead to a component that was expert in transforms of 
precision metadata.  

To illustrate the intended usage, desired capabilities, user roles, and technical 
feasibility, we have developed a demonstration vehicle (a series of screens, without 
real underlying code).  The vehicle has helped us identify opportunities and 
difficulties. We also are using it to try to persuade tool vendors to add such 
capabilities to their products.  

There are many challenges here for database researchers. There is no established 
propagation technology for most properties, operations and events. This is not 
surprising for little-studied issues like data quality, but it even applies to simple 
corrections.  Potential research areas include view updates after the source has 
changed (e.g., for periodically refreshed materialized views), bulk corrections (i.e., 
translating SQL Update statements), propagation options for additional query 
operators (e.g., propagating error information through views (Kon, 1996)), 
administration of expressions composed of multiple operators, and passing 
constraint information through views (realizing that part of the constraint may not 
be expressible at the other tier, and few users can understand complex formulas). 

Two broad challenges are critical to the success of this approach.  First, vendors 
need to implement and perfect the framework specifications and services.  Second, 
because multi-tier systems often span organizations, we need to borrow and use 
well-known ontologies for metadata and operation, both from consortia (World 
Wide Web consortium, Metadata Coalition) and from disciplinary bodies (e.g., 
Dublin Core, or geospatial metadata standards). 
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