Propagating Integrity Information
among I nterrelated Databases

A. Rosenthal

The MITRE Corporation

Bedford, MA, USA (781)-271-7577. (781)-271-2352 (fax)
arnie@mitre.org

E. Siore

Boston College (also at the MITRE Cor poration)
Chestnut Hill, MA, USA (617)-552-3928
sciore@bc.edu

Abstract
Dataintegrity policies often require that quality and integrity metadata be
generated and communicated to potential users. However, in data warehouses,
federations, and other multi-tier databases, administrators at different tiers use
different schemas. Data at the upper tier is derived from the lower, so we consider
the upper tier’ stablesto be views, derived by SQL-like expressions.
Unfortunately, an assertion about some granule in the sources (a table, column, or
cell) is often meaningless to view users, and vice versa. An understanding of the
SQL view givesintuitive guidance for propagating such metadata, but not explicit
semantics.

It appears feasible to create a system that drastically reduces the skill and labor
reguired for propagating metadata and events between the tiers. We show many
examples where, based on the view query and the metadata on the relevant sources,
one can automatically generate useful propagation rules. Propagation downward
from viewsto sourcesis also handled. Our approach isto automate the easy cases
(which we expect to be quite common), and to assist on harder cases. Knowledge
of specific metadatatypes or query operators can be supplied incrementally. If the
view’s query expression isdifficult, one may compose the propagation rules from
its constituent operators.

Keywords
derived data, view, metadata, multi-tier, integrity

T his paper appearsin the |FIP Conference on Integrity and Internal Control in Information Systems.
Ed. S. Jgjodia., Published by Chapman & Hall, 1998.



1 INTRODUCTION

A dataintegrity strategy islikely to involve large amounts of metadata (e.g.,
quality measures, constraints) plus operations and events (e.g., corrections, error
messages). Thisinformation helps users employ the data correctly, and helps
managers plan data quality improvements. Our work explores techniques for
coordinating and propagating such information in a multi-tier database.

A multi-tier database is one that provides several different virtual or physical
databases, each one derived from the one below. The phenomenon takes many
forms. For example, a set of view tables can be used to insulate applications from
stored tables that have been partitioned or denormalized, and which change asthe
workload changes. A federated database provides avirtual schema above multiple
sources. A datawarehouse gathers and transforms data and storesit in a separate
server; this can be seen as computing a materialized view (subject to delaysin
propagating source updates). Web-oriented distributed systems often have tiers of
objects derived from each other.

Because the datain the tiers of amulti-tier database are related, it isimportant that
the tiers maintain full and consistent integrity information. However, integrity
metadata specified at atier isusually local to that tier and is not propagated to
other tiers. Thereason isthat users and administrators lack the time, motivation,
the skill in understanding data derivations (e.g., SQL), or the business knowledge
needed to propagate each item of new or changed metadata to all interested parties.
One cannot ask administratorsto write a separate piece of code for each metadata
type on each attribute, let alone for each row or cell that has metadata attached.

The goal of our research isto extend the ability of database systemsto support tiers
asviews. Usersat any tier should havetheillusion that their database is single-
tier, though perhaps having multiple administrators. In such asystem, all relevant
metadata would be propagated to each tier, and made accessiblein terms of the
schemaat thetier. A simplified picture of the system appearsbelow in Figure 1.

The metadata-propagation problem is comparable to the well-known problem of
view update semantics (Keller, 1986) that has daunted database theorists.
Consequently, we acknowledge that afully automatic solution is not possiblein all
cases. Our intention istherefore to automate the easy cases, and provide
automated assistance for the hard ones.

There are numerous types of metadata, many of which are domain-specific.
Consequently, the kinds of metadata (and the options for how they will be treated)
cannot be provided as aturnkey system. Instead, the system should permit
extensions by tool vendors, customer organizations, and even business-oriented
data administrators. To this end, we propose aframework that allows semantic
choicesto be supplied as small chunks of knowledge, rather than modifications to
aquery processor.



Base Tier: Ordinary Database QL Views |View Tier: Ordinary Database
Schemes of user relations Schemes of user relations
Instances of user relations Instances of user relations
Ancillary M’ Data and Operations View Tier: Ancillary Data, Opns

Operations Operations

(update, monitor changes...) (update, monitor changes...)
Other metadata Other metadata

(constraints, security, data quality...) (constraints, security, data qudity...)

M ete-models

(extensible, shared by all tiers)

for ordinary data for ancillary data
Table, Attribute, Key... Error_bound, Credibility,
Read_Privilege, ...

Figure 1: System Overview

This paper isorganized asfollows. Section 2 discusses the need for integrity
information in multi-tier databases, and how thisinformation can be used
effectively acrosstiers. Section 3 elaborates our proposed framework, and
provides examplesillustrating its components and its use. Section 4 provides
conclusions, plans for future work, and some open issuesin thisarea. Some
preliminary results from this paper appeared in (Rosenthal, 1997).

2 DATA INTEGRITY AND METADATA

2.1 Data integrity requirements of large databases

Larger, more complex databases tend to require greater attention to data integrity
and other controls, beyond the mechanisms used in simpler systems. Multi-tier
databases, especially those that integrate data from many sources, are no exception.
For example, the data warehouse literature reports that data integration and “ data
scrubbing” consume as much as 60-80% of the warehousing effort (Inman, 1996),
(Robinson 1996).



Some of the reasons apply to any large system, regardless of architecture:

Manual checking cannot handle the volume either of existing data or of new
arrivals.

Users' access to databases was traditionally mediated by applications, which
often included integrity protections and limited the data returned (thereby also
enhancing security). Now easy-to-use ad-hoc query interfaces makeit feasible
for many usersto bypass this mediation.

User bases are growing. A larger user base justifies greater expenditures.
Finally, the data and tool sets are valuable, and should be made availableto a
wide span of users. Y et sensitive information will be withheld unlessit can be
protected. Thelarger scale of data and users (potentially thousands of data
attributes and of users) makes security administration and enforcement serious
problems.

Some other factors have been observed (by us and others) to apply especially to
mechanisms that provide integrated views across multiple sources:

Errors that went unnoticed when data was separate become painfully apparent
when conflicting datais brought together. Improved data quality tests (e.g.,
consistency checks) may create a perception of decreased quality.

Users at view tiers are often less intimately familiar with the underlying source
data, and hence less able to compensate for faults.

Warehouse users often use summary data (e.g., totals, averages), which may
hide the underlying errors.

Datathat was appropriate for its original purpose may not suit new goals, e.g.,
matching against other data sources. The variations among the sources’
attitudes, policies, and practices contribute to uneven quality.

In an integrated database, the source that gathers certain data may not be a user
of that data. So thereisno natural internal feedback to ensure quality.

2.2 Uses of Propagated M etadata, Events, and Operations

Metadatais stored in the database, and can be queried using standard data query
languages (such as SQL). The result of aquery could include table references
(“Which tables contain data supplied by Dow Jones?”’), attribute references (“ What
attributes in the SUPPLIERS table have unreliable data?’), or data (“Which

records in EMPLOY EE were last updated by user ‘billgates’ ?7’). This subsection
discusses the ways in which users will want to access different kinds of integrity
metadata.

Data Quality

Data quality metadata might describe a granule’ s sources and processing history,
its credibility, its error bounds (absolute or relative), and its availability (if
connectivity isintermittent). Hundreds of other potentially useful types have been
identified (Wand, 1996), so extensibility is essential.



End users and developers who work with view tables can use data quality metadata
to select datato use (i.e., via query predicates that test quality information) and to
interpret the datathey do use. In both cases, they want descriptionsin terms of
their familiar views, not of source tables. Hence we need to propagate quality
information upward.

Managers can use quality metadata to guide quality improvement, by comparing
(in their native view) data quality with the business requirements for quality. When
the existing quality falls short, the desired quality on view attributes needs to be
propagated down to the source tables. That is, we want a“complaint” facility that
propagates the complaints down to the correct source metadata. If other users
should be made aware of the doubts (e.g., for scientific data or operational
planning), shared complaints expressed against source data might then be
propagated upward to other views.

Integrity Constraints

Today’ s databases have many constraints defined on source tables. View users
need to see them as constraints on view tables. Also, once apredicateisvisible at
both source and view tiers, it can be enforced at either place. Enforcing in clients
permits faster notification of errors, and permits data entry when disconnected
from the source databases.

A radical alternative isto say that constraint administration should be done mainly
at the view level, not at the source level. After al, business domain experts are
more knowledgeable about constraints than the technicians who design source
tables. Each expert might define constraints for a portion of the database,

expressed in terms of user views (e.g., the portion that they are primarily
responsible for populating, e.g., transport or finance). Propagating these
constraints down to source tables allows them to be enforced for all updates, not
just updates through this view, and to use indexes maintained on the source tables.
Also, constraints expressed on the source tables can propagate upward to other
views.

For downward propagation, constraint predicates on view tables can be seen as
gueries, So query processors can re-express them on the source tables. However,
thistranslation may not identify constructs (e.g., key constraints) that are
meaningful to users or that have efficient enforcement techniques. Also, one needs
to ask whether the constraint should apply to all updates, or only those received
through this view.

Upward propagation is more complex. Ideally, one could devise a set of view
constraints equival ent to those on the sources. In practice, while some source
constraints will be expressible as constraints on datain the view tables, otherswill
beirrelevant to updates provided through that view schema, and still otherswill be
relevant but will require data not visible in the view schema (as discussed under
the next item). A reasonable compromise would be to propagate source constraints



upward to views wherever possible, and to indicate that further constraints are also
enforced.

Error Messages

Trouble ensues when aview user’s update violates an integrity constraint that is
enforced on source tier data. An error message should describe the violated
constraint, but a message stated in foreign (source) terms may confuse and even
anger view users. To the extent possible, the violation should be explained in
terms of view tables, even if detected at the source.

Thistranslation is easily automated for simple views, and when the constraint is
expressible on information supplied with the user’ s update. However, some
constraint violations involve data outside the user’ sview. This raises user interface
issues; perhaps one should describe the error both inhybrid terms and purely in
source terms. The system should also check whether the view user was authorized
to read the additional relevant data from the source; if not, there are difficult
tradeoffs between integrity and confidentiality (Jgjodia, 1995).

3 A SYSTEM FRAMEWORK

The previous section demonstrated the value of propagating metadata between
different tiersin a database system. This section describes aframework (that is,
standards, services, and arepository of meta-metadata) that semi -automatically
produces propagation rules, and enables new knowledge about propagation to be
added incrementally and easily.

To understand the scope of this framework, suppose for amoment that atable at a
view tier has just been defined in terms of some source tables. The view definition
language (e.g. SQL) does not specify any metadata for the view. The framework
therefore must do the following:

Determine the types of metadata that should bein the view.

Select “upward rules’ (or provide the view creator with a choice of rules) that
specify how view metadata values will be computed from source metadata, as
well asrulesthat specify how the source metadata should change in response
to changesin the view metadata (called “ downward rules”).

Usethese rules to answer user queries about the metadata, and to keep
metadata val ues consistent between the two tiers.

Our intention is for the framework to be an aid to data administration. Therules
chosen by the framework encode the semantics of the view, and thus ultimately
require human assistance and verification. The data administrator should always
be able to override suggested rules or add new rules. Although our discussion
focuses on metadata, one also wants rules that propagate operations and events.



The following subsections flesh out this approach. Section 3.1 describes a 2-tier
database for our running example. Section 3.2 examines how the framework
determines the kinds of metadatain aview. Section 3.3 considers rules, and how
they are used to conpute metadata.

3.1 A Running Example

We shall illustrate the details of our framework using the following example. The
source-tier schema containsinformation about aircraft, their positions, and their
scheduled flights. Keysare underlined; FLIGHT.A_Id isaforeign key reference.

AIRCRAFT(A_ld, Type, Capacity)
POSITION(A_ld, LatL ong, Speed_Mph, Height)
FLIGHT(E_Id, A_ld, StartAirfield, EndAirfield, Fuel Needed)

The view-tier schema contains three tables, defined as follows.

Defineview POSITION_DE_AVION as
Select AvionNom=A_1d, JeSuislci=LatLong, Vitesse Kph=Speed Mph*1.6
From POSITION

Defineview AIRCR_FUEL as
Select A.*, F.F_Id, F.FuelNeeded
From AIRCRAFT A, FLIGHT F
Where A.A_Id=F.A_Id

Defineview AIRFIELD_FUEL_NEEDSas

Select Airfield=StartAirfield, Total Fuel=SUM (FuelNeeded)
From FLIGHT

Group by StartAirfield

Theview POSITION_DE_AVION renames POSITION attributesto French (or
“franglais’) and converts Speed_Mph to kilometers. The view AIRCR_FUEL joins
FLIGHT and AIRCRAFT, while AIRFIELD_FUEL_NEEDS computes the total
amount of fuel needed for each airfield’ sflights.

3.2 Granules and their Properties

Metadata on granules

A granuleisanidentifiable subset of adatabase table to which metadata or
methods can be attached, e.g., atable, column, row, cell value, or view. Each
piece of metadata associated with agranuleis given aname, called a property.

In our example, the granule POSITION might have a property Authorizations,
describing the users authorized to access the table; the granule
POSITION.Speed_Mph might in addition have the properties Credibility and
AbsoluteErrorBound, denoting the fact that each data value in the column has the



same credibility rating and error bound. Note that for the above examples, avalue
attached to atable or column granule describes each cell within it; other metadata
types could describe properties more global to the granule. Values for specific
granules override the wider-scope value.

We simplify our presentation by assuming that all property values are stored in one
global metadata table that has three columns: Granule, Property, and Value. Thus
one of the above properties might be represented in the metadata table as the row

(POSITION.Speed_Mph, Credibility, “ Gary says0.6")

In practice, this global tableislikely to be aview that draws data from user data
tables, CASE tool metadata tables, and system catal ogs. However, afuller
treatment here would focus attention on irrelevant technical details (e.g., resolving
inheritance and overriding, rules to propagate meta-metadata, and naming
conventions for granules).

Derivation Queries and Derivation Trees

To generate candidate metadata for aview granule, we first gather the metadata on
relevant source granules. The task of identifying these granulesisfairly
straightforward. The basic ideaisto exclude dataand computation that are
irrelevant to the view granule For agranule g of aview V, theinitial derivation
guery (denoted idq(g,V)) isdefined as follows:

If gisan attribute A (i.e., column), use “Select V.A From V"
If gisacdl, attribute A of row r, use “Select V.A From V whererow_id =r"
If gistheentireview, use“Select * from V”

Any query equivalent toidq(g,V) is called aderivation query, and denoted dq(g,V).
Query simplifications may be performed (e.g., replace V by its defining query,
exploit integrity constraints). Algorithms developed for monitoring changes to
viewswould seem to apply here, though we have not yet made specific
connections. In particular, pushing projections down allows us to ignore metadata
on attributes that are immediately projected away; selections allow usto ignore
metadata on irrelevant cells.

For example, consider the views defined at the beginning of this section. Queries
will be shown astrees, in relational algebra, and tree terminology will be used
freely (e.g., calling theinputs of dq(g,V) the leaves of aderivation tree). The
derivation treefor POSITION_DE_AVION.Vitesse Kph appearsin Figure 2a; the
derivation tree for AIRCR_FUEL.A_Id appearsin Figure 2b.

The derivation tree for agranule may be much simpler than the underlying view
query. When AIRCR_FUEL is projected solely on FLIGHT attributes, the join
with AIRCRAFT isirrelevant (since the foreign key constraint implies that each
FLIGHT matches exactly one AIRCRAFT). Hence the derivation query for
AIRCR_FUEL .FuelNeeded (see Figure 2c) contains only the node for
FLIGHT.FuelNeeded. This sort of reasoning would require skill and care from a
data administrator, but is easy to automate.



MULTIPLY by 1.6

\ JOIN
RENAME

7
POSITION.SpeedM P+ FLIGHT.A-ID AIRCRAFT.A-ID FLIGHT.Fuel

(a (b) (c)
Figure 2: Example Derivation Trees

Suggested Granule Properties

When theinitial derivation query for aview granule g issimplified, what remains
are the source granules necessary to compute g. Thusit is not unreasonable to
assume that the properties of the source granules will “filter up” to g.

We express this intuition by defining the suggested set of properties for view
granule g as{ P| Pisaproperty of agranulein aleaf of dq(g, V)}

The data administrator is free to omit some suggested properties and add others. In
fact, the non-presence of a particular property in the view might be cause for a
fruitful negotiation between the administrators of the two tiers.

3.3 Propagation Rules and Property Value Computation

Given aview granule g, the values of its properties will be calculated by assigning
propagation rules (or just rules) to the operatorsin g's simplified derivation tree.
Informally, each rule specifies afunction that propagates metadata up (or down)
the derivation tree. This section describes the structure and administration of these
rules, aswell as the mechanism for using rules to calculate property values of view
granules.

Rules

A rule has four components. a direction, a computation, a scope, and a strength.
We discuss each component in turn, and then present examples.

Thedirection of aruleiseither “upward” or “downward”. An upward rule uses
the values of the leaf granulesto calculate a property value for theresult. A
downward rule uses the property value for a(single) view granuleto calculate
valuesfor the leaf nodes. A rule specified as“both” is shorthand for two rules, one
for each direction.

The computation of aruleisafunction that determines how the output(s) will be
calculated from the input(s).



The scope of arule specifieswhen therule is applicable to agranule. The scope
specification makesit possible to define rules at the most general possible level, so
asto promote sharing and better abstraction. In our scope, we can specify the
tables, attributes, properties, and the atomic query operatorsto which the rule

applies.

The strength of arule specifies the extent to which the system should automatically
useit. We currently have three possible values. A definitiveruleisto be applied
automatically, without user interaction. A default ruleisto be preferred by the
system, but is subject to user verification. And acandidate rule is one of perhaps
several equal possibilitiesto be presented to the user. More sophistication is clearly

possible (e.g., overriding, removing candidates, dependence on user, type-
checking, etc.). However, we chose to leave such enhancements until we have
better experience with the simpler scopes.

Examples of Rules
The most generally applicable metadata-derivation ruleis “do nothing” —that is, to
pass the property value unchanged up (or down) the derivation query. Thisrule
seems always applicable to the RENAME operator, and often applicable to

MULTIPLY. (The property Credibility can passthrough MULTIPLY unchanged,
but AbsoluteErrorBound must scale proportionately.) The following rules capture
these observations:

R1 Direction: both
Computation: output = input
Scope: operation=RENAME,
tables=ALL, atts=ALL, properties=sALL
Strength: definitive
R2 Direction: both
Computation: output = input
Scope: operation=MULTIPLY ()
Tables=ALL, atts=ALL, properties=Credibility
Strength: definitive
R3 Direction: upward
Computation: output = input* c
Scope: operation=MULTIPLY(c)
Tables=ALL, atts=ALL, properties=AbsoluteErrorBound
Strength: definitive
R4 Direction: downward
Computation: output =input/c
Scope: operation=MULTIPLY ()
Tables=ALL, atts=ALL, properties=AbsoluteErrorBound
Strength: definitive

10



There are many other rules of narrower scope. We would hope that vendors and
even user organizations would incrementally add these rules to their systems. For
example, for the SUM aggregation operator and the AbsoluteErrorBound property,
arule (with strength “default”) might multiply the input by the number of values
being aggregated.

Suppose we have probabilistic estimates of an attribute’ s correctness (here, defined
asthe probability of being exactly right) and availability (for fault tolerance, the
probability of receiving aresponse from the server that stores the information).
Then to calculate the correctness and availability properties, one might multiply

the values from the input properties, with strength “ candidate”.

Other rules might perform more subtle analyses. We create a property type
Pedigree to capture how each input to a granule’ s derivation affects the granule’s
value. Consider the view AIRCR_FUEL, obtained by joining AIRCRAFT and
FLIGHT onforeign key A_ID. Because of the foreign key constraint, only
FLIGHT.FuelNeeded influences AIRCR_FUEL .FuelNeeded. But the pedigree of
AIRCR_FUEL .Capacity is more complex. AIRCRAFT.Capacity determines the
value, but since an aircraft could have an arbitrary number of flights, both
AIRCRAFT.A_ld and FLIGHT.F_Id influence which tuples are present, and the
number of duplicates.

Asafinal example, when an operator combines two textual or Boolean fields, the
result’s Credibility might be set to the minimum (or product) of theinput values (if
purely numeric), or one might concatenate the textual discussions of credibility.

Invoking Propagation Rules

Given property P of view granule g, itsvalue is determined as follows. The
derivation query dq(g, V) iscalculated. For every operator in thetree, an
applicable upward ruleis chosen. The computations of the rules are then
composed to compute the value of the root node, which becomes the value of P.

For example, consider the view granule POSITION_DE_AVION.Vitesse Kph and
its property Credibility. The derivation query tree for this granule was givenin
Figure 2a. We therefore need to choose an applicable rule for each of the two
operators of thetree. Using therules defined in Section 3.3, we seethat R1isthe
applicablerulefor the RENAME operator, and R2 isthe applicable rule for
MULTIPLY. Asboth rules have the identity function astheir computation, the
result isthat the value of Credibility isthe samefor this granule asfor the granule
POSITION.Speed_Mph.

Now consider the property AbsoluteErrorBound for the same view granule. We
must choose rules for the same derivation tree applicable to this property. The
applicablerulesare R1 for RENAME, and R3 for MULTIPLY. Theresult isthat
the value for the property will be 1.6 times the value of AbsoluteErrorBound for
POSITION.Speed_Mph.

In addition to selecting upward rules for each view property, downward rules can
also be selected (either automatically, or with assistance from the view creator).

11



By doing so, the view creator links the metadata at both the source and the view, so
that changes at one tier can be propagated to the other.

Administering Rules, within a Component Framework

Managing the rule set includes creating and modifying rules, inspecting what rules
apply, overriding or removing rulesinherited from awider scope, and selecting

one of the candidate rules. The system should provide tools for performing al
these tasks. Vendors, professional administrators, and power users need many of
the same capabilities, so the tools should be part of the delivered system.

Rule choice may depend on the derivation query’ slogic, domain semantics, and
organizational policy. Organizations could contribute domain-specific types and
rules, and database administrators are able to add database-specific rules and
override existing ones. Some specifications might be supplied when anew
property or new derivation operator is defined. Others might be created when
defining aview to serve a particular community or application. Simple tasks might
be |eft to run-time users (e.g., confirming defaults, choosing among candidates).

It isimpossible to provide appropriate rules for all properties, through all possible
atomic query operators (both SQL and user-defined), for all organizations. A
vendor of apropagation system could provide aninitial set of useful rules. But as
needs expand, both vendors and their customers will need to extend and customize
the rule base. Thus, the system should be componentized, i.e., should alow simple,
independent steps to extend the operators, properties, and rules.

An important aspect of our framework proposal isthat it is acomponent framework
for propagation rules, i.e., standards and services that enabl e separately-provided
components to work together. The system framework would maintain a database
of rulesthat isavailableto all tiers, and interfaces for inspecting, defining,
modifying, and overriding rules. The framework also provides the facilitiesfor rule
invocation. Finally, to reduce semantic heterogeneity, aframework must define a
set of fundamental properties (e.g., Credibility) and view-derivation operators (e.g.,
Select, Outerjoin), that all tiers would be encouraged to use.

4 DISCUSSION, SUMMARY AND FUTURE WORK

To manage integrity in amulti-tier database, we must propagate integrity metadata
and events among the tiers. We have tried to illustrate several points:

In multi-tier systems, it is essential to propagate ancillary metadata. For each
metadata or event type, one may want propagation optionsthat are customized
for particul ar databases, tables, columns, cell values or other groupings. Since
every attribute (and many other granules) may be associated with several
pieces of ancillary information, automated assistance is essential.

A framework can be constructed to help componentize propagation
capabilities, enabling rules and knowledge to be supplied incrementally. The



framework would be employed at avariety of skill levels, e.g., to write new
rules, to select appropriately from existing ones, or simply to execute arule to
see metadata from other tiers.

While the general problem of “first class’ viewsis notoriously hard, the goal
of providing assistance is attainable. By offering multiple candidate rules, we
help administrators handle cases where no single rule applies universally. A
small collection of heuristics, plus knowledge of query operator semantics can
handle many views.

Propagation rules for complex queries can be composed from propagation
rules of constituent operators, many of which will be simple. Propagating
events may involve actions outside the database (e.g. “forward this request via
email”).

Our project (Managing Risk in the Data Warehouse) aimsto provide the
framework and simple components that handle some of the easy cases. More
complex components (e.g., for complex derivation operators) would then be
plugged in as researchers or vendors produced them. For example, research on data
quality measures might lead to a component that was expert in transforms of
precision metadata.

Toillustrate the intended usage, desired capabilities, user roles, and technical
feasibility, we have devel oped a demonstration vehicle (a series of screens, without
real underlying code). The vehicle has hel ped usidentify opportunitiesand
difficulties. We also are using it to try to persuade tool vendorsto add such
capabilitiesto their products.

There are many challenges here for database researchers. Thereis no established
propagation technology for most properties, operations and events. Thisis not
surprising for little-studied issues like data quality, but it even appliesto simple
corrections. Potential research areas include view updates after the source has
changed (e.g., for periodically refreshed materialized views), bulk corrections (i.e,
translating SQL Update statements), propagation options for additional query
operators (e.g., propagating error information through views (Kon, 1996)),
administration of expressions composed of multiple operators, and passing
constraint information through views (realizing that part of the constraint may not
be expressible at the other tier, and few users can understand complex formulas).

Two broad challenges are critical to the success of this approach. First, vendors
need to implement and perfect the framework specifications and services. Second,
because multi-tier systems often span organizations, we need to borrow and use
well-known ontol ogies for metadata and operation, both from consortia (World
Wide Web consortium, Metadata Coalition) and from disciplinary bodies (e.g.,
Dublin Core, or geospatial metadata standards).

13



5 REFERENCES

Inmon, W. (1996) Building the Data Warehouse. John Wiley & Sons, New Y ork.

Jajodia, S. (1995) Solutions to the polyinstantiation problem, in Information
Security: An Integrated Collection of Essays (ed. M. Abramset a.), IEEE
Computer Society Press.

Keller, A. (1986) Choosing aView Update Translator by Dialog at View
Definition Time. Very Large Data Base Conference, Kyoto, Japan.

Kon, H. (1996) Data Quality Management: Foundationsin Error Measurement and
Propagation. Ph.D. Thesis, MIT Sloan School of Management.

Robinson, T. (1996) It al startswith good, clean data. Software Magazine
(supplement), October.

Rosenthal, A. and Dell, P. (1997) Propagating Integrity Information in Multi-Tiered
Database Systems. Workshop on Information Quality, Cambridge, MA.

Wand, Y. and Wang, R. (1996) Anchoring Data Quality Dimensionsin
Ontological Foundations. Communications of the ACM, November.

14



