## Automated measurement of expressive prosody in neurodevelopmental disorders

## Emily Tucker Prud'hommeaux ${ }^{1}$, Jan van Santen ${ }^{1}$, Rhea Paul ${ }^{2,3}$, Lois Black ${ }^{1}$

${ }^{1}$ Oregon Health and Science University Center for Spoken Language Understanding, ${ }^{2}$ Yale University Child Study Center, ${ }^{3}$ Southern Connecticut State University

## tion

- Autism Spectrum Disorders (ASD) are associated with impaired expressive prosody. - Existing prosodic performance evaluation methods rely on human judgments, which are time-consuming and subjective.

Objective: Establish the validity of automated digital measures of prosody by comparing automated objective measures with human judgments.

## Background

Four tasks completed by TD and ASD subjects (age $4-7$ yrs) as part of Expressive $\mathcal{E}$ Receptive Prosody in Autism grant (NIH 1R01DC007129) [1].

1. Lexical Stress: Repeat disyllabic word with initial or final stress.
2. Syntactic Phrasing (PEPS-C Chunking):Describe picture indicating the number of items, e.g., "chocolate, cookies, and jam" vs. "chocolate-cookies and jam" [2].
3. Pragmatic Style: Talk about a picture using prosody appropriate for a baby vs. an adult.
4. Pragmatic Focus (PEPS-C Focus): Correct an inaccurate description of a picture, e.g., if blue cow is described as green, the subject responds "BLUE cow" [2].

Responses scored on a scale from -1 to 1 using automated methods that capture contrastive melodic and temporal speech patterns [1].

## Experimental Design

## Data and Subjects

- Forty minimal utterance pairs selected for each task: each pair from single speaker with same lexical content but different target prosody.
- Pairs selected randomly from dataset to fully represent the score space.
- Four judges: adult speakers of American English.


## Presentation

- Test administered via self-directed web interface with one pair per page.
- Pairs and elements of each pair presented in random order.
- Judges asked to indicate which of two utterances corresponded to the target meaning and their certainty about that judgment.



## Scoring

- Judges' responses scaled to range from -1 to 1 .
- Correlation calculated between judges and between objective automated measure and subjective scores.
- Overlap in polarity counted between judges and between objective automated measure and weighted mean subjective score.


## Results

| Task Name | Mean Inter-judge |  | Min Inter-judge |  | Max Inter-judge |  | Objective vs. Subjective |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Correlation | Overlap | Correlation | Overlap | Correlation | Overlap | Correlation | Overlap |
| Stress | 0.58 | 85.14 | 0.39 | 78.38 | 0.70 | 89.19 | 0.61 | 78.38 |
| Phrasing | 0.34 | 80.00 | 0.15 | 67.50 | 0.62 | 87.50 | 0.50 | 80.00 |
| Style | 0.75 | 83.33 | 0.63 | 75.00 | 0.82 | 90.00 | 0.64 | 77.50 |
| Focus | 0.69 | 78.33 | 0.56 | 70.00 | 0.80 | 90.00 | 0.57 | 75.00 |




## Summary

- All tasks: Correlation between objective and mean subjective scores > minimum inter-judge correlation.
- All tasks: Overlap between objective and mean subjective scores >= minimum inter-judge overlap.
- Lexical Stress and Syntactic Phrasing: Objective-subjective correlation > mean inter-judge correlation.
- Syntactic Phrasing: Objective-subjective overlap = mean inter-judge overlap.


## Conclusions

Automated digital measures of prosody:

- require less time than human assessment;
- are comparable in reliability to consensus subjective judgment;
- can identify correct target prosody as reliably as human judges; and
- show potential for identifying new, more specific speech-based markers for ASD.

More data needed to determine if objective measures discriminate better between groups than subjective measures

## References

[1] van Santen J., Prud'hommeaux, E.T., Paul, R., Black, L., Shriberg, L. 2008. Expressive prosody in autism: Effects of prosody function and processing demands. Poster presented at IMFAR 2008.
[2] Peppé, S. and McCann, J. 2003. Assessing intonation and prosody in children with atypical language development: the PEPS-C test and the revised version. Clinical Linguistics and Phonetics 17(4-5), 345-354.

## Sponsors

NIH 1R01DC007129 (PI: van Santen, I: Black, Paul), Autism Speaks Mentor-based Fellowship (Prud'hommeaux)
> co OREGON
> $\underset{\text { UNIVERSITY }}{\text { HEALTH }}$ \& SCIENCE

