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Before reading further, please arrange to have an empty seat on either side of you. Now that you are
seated, please write your name on the back of this exam.

This is a closed-notes and closed-book exam. Computers, calculators, and books are prohibited.

• Partial credit will be given so be sure to show your work.

• Feel free to write helper functions if you need them.

• Please write neatly.

Problem Points Out Of

1 6

2 8

Total 14
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A click on a link in a web browser leads to all manner of network to-ing and fro-ing and, if everything
works out, eventually to the delivery of an HTML document to your web browser. As you probably already
know, HTML is a text-based structured document layout language. So of course the front end of your browser
includes a parser for HTML.

HTML is famously convoluted so a proper context-free grammar for it runs to hundreds of lines. (Google
it sometime!) This problem chips off a very small part. In particular, we’ll deal with documents that have
only bodys and tables. We’ll call it mini-HTML. Here’s an example:

<HTML>

<BODY>

<TABLE>

<TR>

<TD>A</TD> <TD>B</TD>

</TR>

<TR>

<TD>C</TD> <TD>D</TD>

</TR>

</TABLE>

</BODY>

</HTML>

As you might know, the items above in the angle brackets are called tags. Each part of an HTML
document is supposed to have an opening tag paired up with a closing tag with a backslash prefix. In the
simple example, we can see that the content of a mini-HTML document is enclosed between opening and
closing HTML tags. Normally there is a HEADER but in mini-HTML there is just a BODY containing a list
of zero or more TABLEs. Each table contains a list of zero or more rows (TR) (that your browser lays out
vertically) and each row has zero or more table data (TD) items (that your browser lays out horizontally).
Each table data item can contain some text.

1. (6 Points) Assuming that you are given the definition of a nonterminal Text, write a context free
grammar for mini-HTML as described above. Your grammar should have a start symbol Html as
shown below and non-terminals for the body, for tables, for table rows and table data. Note that the
opening and closing tags make it easy to define a non left-recursive grammar.

Text ::= ...

Html ::= <HTML> Body </HTML>

Answer:

Text ::= ...

Html ::= <HTML> Body </HTML>

Body ::= <BODY> Tables </BODY>

Tables ::= <TABLE> TRows </TABLE> Tables | empty

TRows ::= <TR> TData </TR> TRows | empty

TData ::= <TD> Text </TD> TData | empty
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2. (8 Points) Using HTMLO for “html open” and HTMLC for “html close” (and likewise for the others),
consider the following F# type for tokens for mini-HTML documents:

type tokens = HTMLO | HTMLC | BODYO | BODYC | TABLEO | TABLEC

| TRO | TRC | TDO | TDC | Text of string

For example, the mini-HTML document above could be represented in F# by the list of tokens:

[HTMLO; BODYO; TABLEO; TRO; TDO; Text("A"); TDC; TDO; Text("B"); TDC; ...]

Now consider the following type for abstract syntax trees for mini-HTML documents:

type td = Td of string

type tr = Tr of list<td>

type table = Table of list<tr>

type body = Body of list<table>

type html = Html of body

Using your grammar as a guide, write a recursive descent parser in F# for min-HTML documents.
Your parser should have type: parse : list<tokens> -> html.

Answer:

let parse tokens =

let rec html tokens =

match tokens with

| HTMLO::tokens -> let (ast, tokens) = body tokens

match tokens with

| HTMLC::tokens -> (Html ast, tokens)

| _ -> failwith "missing html close"

| _ -> failwith "missing html open"

and body tokens =

match tokens with

| BODYO::tokens -> let (ts, tokens) = tables tokens

match tokens with

| BODYC::tokens -> (Body ts, tokens)

| _ -> failwith "missing body close"

| _ -> failwith "missing body open"

and tables tokens =

match tokens with

| TABLEO::tokens -> let (tab, tokens) = table (TABLEO::tokens)

let (tabs, tokens) = tables tokens

(tab::tabs, tokens)

| _ -> ([], tokens)

and table tokens =

match tokens with

| TABLEO::tokens -> let (rs, tokens) = rows tokens

match tokens with

| TABLEC::tokens -> (Table rs, tokens)

| _ -> failwith "missing table close"

| _ -> failwith "missing table open cannot happen"
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and rows tokens =

match tokens with

| TRO::tokens -> let (r, tokens) = row (TRO::tokens)

let (rs, tokens) = rows tokens

(r::rs, tokens)

| _ -> ([], tokens)

and row tokens =

match tokens with

| TRO::tokens -> let (ds, tokens) = data tokens

match tokens with

| TRC::tokens -> (Tr ds, tokens)

| _ -> failwith "missing table row close"

| _ -> failwith "missing table row open"

and data tokens =

match tokens with

| TDO::tokens -> let (d, tokens) = datum (TDO::tokens)

let (ds, tokens) = data tokens

(d::ds, tokens)

| _ -> ([], tokens)

and datum tokens =

match tokens with

| TDO::Text(s)::TDC::tokens -> (Td s, tokens)

| _ -> failwith "bad table data item"

match html tokens with

| (ast, []) -> ast

| _ -> failwith "bad html"
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