
CS 1101 Computer Science I

Instructor Muller

stddraw API

(DRAFT of 1/15/2016)

This document describes the application programmer interface (API) for the
stddraw library. An API describes the set of functions and other resources that
are available in a given library. This library was ported from Java to Python
by Pine Wu.

The functions in this library will be available for use in your programs if you
include the line

from stddraw import *

in your .py file, (just below the header comments) and if you have placed the
file stddraw.py in the appropriate site-packages folder on your computer.
The instructions for tracking down the site-packages folder are specified in
problem set 1.

In order to use the functions in the stddraw library, in your program, you’ll
first need to create a Picture. For example:

myPicture = Picture()

This binds the variable myPicture to a 2-dimensional canvas on which
shapes can be drawn. The default size of the canvas is 512 × 512 pixels. The
canvas is layed out as a 2-dimensional xy-plane, a unit square of size 1.0 × 1.0
with (x, y) = (0.0, 0.0) referring the lower left corner, (x, y) = (.5, .5) referring
the middle of the canvas and (x, y) = (1.0, 1.0) referring the upper right corner.

The system allows you to create widgets of various sorts, buttons, labels,
text fields, lines and shapes of various sorts. These can all be drawn on the
canvas. For example, if you wish to draw a square, you can use the square

function:

myPicture = Picture()

myPicture.square(.5, .5, .1)

myPicture.start()

It is important to note that the last line, the statement:

myPicture.start()

at the end of your program, is required to activate the picture.

1

Types

In the remainder of this document we will use types to specify the inputs and
outputs to the various functions in stddraw.py. We will use Python’s built-in
types int, float and string. We will use the symbols handle, event and
color to refer to the types of handles, events and colors (resp). Handles and
events will be described below. We’ll use the symbol void to refer to the type
of no value. Python has built-in types tuple and function. We’ll be a bit more
specific, using the notation int ∗ int as the type for a 2-tuple (or pair) of
integers, etc and we’ll use the right arrow → for function types, for example,
with float ∗ float → void representing the type of a function that accepts a
pair of floating point numbers and returns nothing.

Drawing Functions

The drawing functions generally return a handle for whatever widget has been
drawn. Subsequent calls referring to the handle may change properties of the
widget such as color or location. If you need a special color, use the makeColor

function in (see Special Functions below). The default color for filled figures is
’Black’.

line : float ∗ float ∗ float ∗ float ∗ color ∗ int→ handle

The call line(x0, y0, x1, y1, color=’black’, penWidth=1) draws a line
of width penWidth from (x0, y0) to (x1, y1), of the specified color. The
default color is black, and the default penWidth is 1. The following invocations
would all work

myPicture.line(x0, y0, x1, y1)

myPicture.line(x0, y0, x1, y1, ’Blue’, 3)

myPicture.line(x0, y0, x1, y1, color=’Blue’)

arc : float ∗ float ∗ float ∗ float ∗ int ∗ int→ handle

The call arc(x0, y0, halfWidth, halfHeight, startAngle, degree) draws
an arc from startAngle to startAngle+degree out of an oval centered at (x0,
y0) of halfWidth and halfHeight. If startAngle is 0, it means the direction
is upward.

filledArc : float ∗ float ∗ float ∗ float ∗ int ∗ int ∗ color→ handle

The call filledArc(x0, y0, halfWidth, halfHeight, startAngle, degree,

color) draws the same figure as arc does, except the arc has a color.

oval : float ∗ float ∗ float ∗ float→ handle

The call oval(x0, y0, halfWidth, halfHeight) draws an oval centered at
(x0, y0), of halfWidth and halfHeight.

2

filledOval : float ∗ float ∗ float ∗ float ∗ color→ handle

The call filledOval(x0, y0, halfWidth, halfHeight, color) draws the
same figure as oval does, except the oval has a color.

circle : float ∗ float ∗ float→ handle

The call circle(x0, y0, radius) draws a circle centered at (x0, y0), of ra-
dius radius.

filledCircle : float ∗ float ∗ float ∗ color→ handle

The call filledCircle(x0, y0, radius, color) draws the same figure as
circle does, except the circle has a color.

rectangle : float ∗ float ∗ float ∗ float→ handle

The call rectangle(x0, y0, halfWidth, halfHeight) draws a rectangle cen-
tered at (x0, y0), of halfWidth and halfHeight.

filledRectangle : float ∗ float ∗ float ∗ float ∗ color→ handle

The call filledRectangle(x0, y0, halfWidth, halfHeight, color) draws
the same figure as rectangle does, except it has a color.

square : float ∗ float ∗ float→ handle

The call square(x0, y0, radius) draws a square centered at (x0, y0), of
radius that is half of its side’s length.

filledSquare : float ∗ float ∗ float ∗ color→ handle

The call filledSquare(x0, y0, square, color) draws the same figure as
square does, except it has a color.

polygon : float list ∗ float list→ handle

The call polygon(xList, yList) draws a polygon defined by the points (xList[0],
yList[0]), (xList[1], yList[1])... (xList[n], yList[n]).

filledPolygon : float list ∗ float list ∗ color→ handle

The call filledPolygon(xList, yList) draws the same figure as polygon

does, except it has a color.

3

text : float ∗ float ∗ string ∗ string→ handle

The call text(x0, y0, message, anchor=’sw’) draws message starting at
(x0, y0), anchored at southwest provide the anchor one of ’n’, ’s’, ’w’, ’e’,
’nw’, ’ne’, ’sw’ or ’se’. ’ne’, For anchors, ’n’ means the midpoint of north
side overlaps with (x0, y0), ’nw’ means the northwest point overlaps with (x0,

y0).

readGif : string→ image

The call readGif(photoFileName) returns a Tkinter PhotoImage object, which
can be used in combination with drawing function image below.

image : float ∗ float ∗ image ∗ string→ handle

The call image(x0, y0, photo, anchor=’sw’) renders photo, anchored at
(x0, y0) with the provided anchor direction. For example:

picture = Picture()

photo = picture.readGif(’myPhoto.gif’)

handle = picture.image(x0, y0, photo, anchor=’s’)

Manipulating Functions

Given a handle of a widget, there are functions that allow for the alteration of
properties of the widget. For example,

myPicture = Picture()

mySquare = myPicture.square(.5, .5, .1) # mySquare has the

myPicture.move(mySquare, .1, .1) # move the square

delete/move/configColor/(square......), text has a special config method.

move : handle ∗ float ∗ float→ void

The call move(item, x0, y0) moves item to its right by x0, and up by y0.
The values of x0 and y0 can be negative.

delete : handle→ void

The call delete(handle) deletes the widget with handle handle.

configColor : handle ∗ color→ void

The call configColor(item, color) changes the color of the widget with han-
dle handle.

4

configText : handle ∗ string→ void

The call configText(item, text) changes the message of a text item.

wait : handle ∗ int∗(event→ void)→ void

The call wait(handle, milliseconds, event=action) waits for milliseconds
milliseconds. If an event action is given, it will be performed after that wait.

Events

Most of the widgets can respond to events such as mouse clicks. By “respond-
ing” to an event, we mean that a function can be executed when the event
occurs.

bind : string ∗(event→ void)→ void

A call bind(eventName, responder) The value of eventName should be one of
the strings:

• ’〈Button-1〉’ means left click,

• ’〈Button-3〉’ means right click,

• ’〈Enter〉’ means Mouse on Canvas,

• ’〈Leave〉’ means mouse leaves Canvas.

Provide responder in the following way:

def responder(event):

do something

...

myPicture.bind(’<Button-1>’, responder)

Or as a one-liner:

myPicture.bind(’<Button-1>’, lambda event: do something)

Special Functions

makeColor : int ∗ int ∗ int→ color

In the call makeColor(red, green, blue), red, green and blue should be
between 0 and 255.

randomColor : void→ color

Returns a random color.

5

setW : int→ void

The call setW(w) sets the canvas width to w.

setH : int→ void

The call setH(h) sets the canvas width to h.

getW : void→ int

The call getW() returns the width of the canvas.

getH : void→ int

The call getH() returns the height of the canvas.

clear : void→ void

The call clear() clears the canvas.

start : void→ void

The call start() activates the picture.

6

