
Second Exam
CS 1101 Computer Science I

Spring 2016

Section 04

KEY

Thursday April 14, 2016

Instructor Muller
Boston College

Before reading further, please arrange to have an empty seat on either side of you. Now that you are
seated, please write your name on the back of this exam.

This is a closed-notes and closed-book exam. Computers, calculators, and books are prohibited.

This is a 26 point exam. Answer all questions in Sections 1 and 2. Answer either 3.1 or 3.2
but not both. Circle the number of the problem that you want graded.

• Partial credit will be given so be sure to show your work.

• Feel free to write helper functions if you need them.

• Please write neatly.

Problem Points Out Of

1 6

2.1 4

2.2 4

3 8

4 4

Total 26

1

Section 1 (6 Points Total)

1. (1 Point) Digital computers are “digital” because they use discrete values — digits — to represent
things rather than continuous values. Digital computers are actually binary digital computers because
the discrete values are binary digits (bits) — everything in a binary digital computer is represented
using the common substrate of bits. For example, the letter A is represented as the sequence of 8 bits
0100 0001. This very same bit sequence is also the representation of the decimal integer 65, it can
also represent 8 booleans, maybe a machine instruction such as Beq as well as untold other items.

In a sentence or two, explain how a digital computer can keep all of this straight. How does it know
when to interpret 0100 0001 as a Beq rather than A?

Answer: The program counter together with the stored instructions impose an interpre-
tation on the bits.

2. (1 Point) Is the following well-defined? If so, what is its value?

[(a, 8) for a in ["Boston", "College"]]

Answer: Yes, answer is [(”Boston”, 8), (”College”, 8)]

3. (1 Point) Solve for X.

(a) C516 = X4.

Answer: We could convert C516 to the equivalent decimal numeral, 197, and then use
the iterative algorithm to convert 197 to base 4. However, since 4 is a power of 2,
there is an easier way. C516 = 1100 01012. Since 4 = 22, we can regroup the bits in
groups of 2: 11 00 01 01 = 30114, so X = 3011.

(b) C516 = X8.

Answer: As above C516 = 1100 01012. Since 8 = 23, we can regroup the bits in groups
of 3: 11 000 101 = 3058, so X = 305.

2

4. (3 Points) Show the state of the stack and heap after (1) has executed but before (2) has executed.

def f(xs, ys):

zs = (ys, 8, xs) (1)

return zs (2)

f([4, 5, 6], (1, (2, (3, None)))

Stack Heap

Answer:

+---+

| f |

+--------+ +---+---+ +---+---+ +---+---+

| ys | o-+-------------------------> | 1 | o-+--->| 2 | o-+--->| 3 | o-+--+

+----+---+ +---+---+ +---+---+ +---+---+ |

| zs | o-+--------------------+ ^ =

+----+---+ v |

| xs | o-+---------+ +---+ |

+----+---+ | | o-+------+

| +---+

v | 8 |

+---+ +---+

| 4 |<-----+-o |

+---+ +---+

| 5 |

+---+

| 6 |

+---+

3

Section 2 (8 Points Total)

1. (4 Points) Write a function masterList : (string * ’a list) list -> ’a list such that a given
call masterList(pairs) returns a list combining all of the lists in the pairs. For example, the call

masterList([("Haiming", [1.0, 2.0]), ("Alice", [3.0, 4.0])])

should evaluate to the list [1.0, 2.0, 3.0, 4.0].

Answer:

def masterList(pairs):

if pairs == []:

return []

else:

(_, xs) = pairs[0]

rest = pairs[1:]

return xs + masterList(rest)

def masterList(pairs):

ys = map(lambda (_, zs): zs, pairs)

return reduce(operator.concat, ys, [])

2. (4 Points) Write a function arrayDiff : ’a array * ’a array -> ’a array such that a given call
arrayDiff(a1, a2) returns a new array containing all of the elements of a1 that are not in a2. For
example, the call arrayDiff([2, 3, 4], [3, 5]) should evaluate to the array [2, 4].

Answer:

def arrayDiff(a1, a2):

return [a for a in a1 if not(a in a2)]

4

Section 3 (8 Points Total)

Do either problem 1 or 2. Do not do both.

1. (8 Points) In statistics, the population standard deviation of a set of k numbers n1, n2, . . ., nk, is a
measure of the range of values in the set. Computation of the population standard deviation starts
with computing the mean

a = (n1 + n2 + . . . + nk)/k.

Then, for each member ni of the population, we compute a measure of ni’s deviation from the mean.
The deviation for ni is di = (ni − a)2. Finally, the population standard deviation is the square root of
the average of the di:

psd =
√

(d1 + d2 + . . . + dk)/k

For the purposes of the following three problems, we’re going to take the population as a list of floating
point numbers. Feel free to use the math.sqrt function in solving these problems. Also feel free to use
the function in (a) in your solution to (b) and/or (c) and feel free to use the function in (b) in your
solution to (c), even if you weren’t able to complete (a) and (b).

(a) (2 Points) Write a function deviations : float list -> float list such that a function call
deviations(population) returns a list of the deviations. For example, the call

deviations([5.0, 3.0, 7.0])

should evaluate to the list [0.0, 4.0, 4.0] because the average a = (5.0 + 3.0 + 7.0) / 3

is 5.0, and

(5.0 - 5.0) ** 2.0 = 0.0,

(3.0 - 5.0) ** 2.0 = 4.0 and

(7.0 - 5.0) ** 2.0 = 4.0.

Answer:

def average(ns): return sum(ns) / len(ns)

def deviations(ns):

ave = average(ns)

return map(lambda n : (n - ave) ** 2.0, ns)

5

(b) (2 Points) Write a function standardDeviation : float list -> float such that a call

standardDeviation(population)

will evaluate to the population standard deviation of population. For example, the call

(standardDeviation [5.0, 3.0, 7.0])

should evaluate to 1.63 because the deviations of [5.0, 3.0, 7.0] are [0.0, 4.0, 4.0] and

math.sqrt((0.0 + 4.0 + 4.0) / 3.) = math.sqrt(8.0 / 3.)

= math.sqrt(2.66)

= 1.63.

Answer:

def standardDeviation(ns):

devs = deviations(ns)

return sqrt(average(devs))

6

(c) (4 Points) This problem is concerned with computing summary data for student scores. Let’s say
the input data is a list of pairs:

[("Haiming", [80., 75.]), ("Alice", [99., 98.]), ("Mark", [70., 60.])]

The desired output is a list of pairs recording how many standard deviations a student’s average
exam score is from the class average. In this example, the desired result would be

[("Haiming", -0.19), ("Alice", 1.27), ("Mark", -1.08)]

The overall average of [80., 75, 99., 98., 70., 60.] is

(80. + 75. + 99. + 98. + 70. + 60.)/6. = 482./6. = 80.3

and the standard deviation is 14.19. The averages for each of the students (resp.) are

(80. + 75.) / 2.0 = (155. / 2.0) = 77.5,

(99. + 98.) / 2.0 = (197. / 2.0) = 98.5 and

(70. + 60.) / 2.0 = (130. / 2.0) = 65.0.

So the deviations of the average exam score for each of the students from the overall average are:

[77.5 - 80.3, 98.5 - 80.3, 65.0 - 80.3] = [-2.79, 18.20, -15.29]

And finally, the number of standard deviations for each student are

[-2.79 / 14.19, 18.20 / 14.19, -15.29 / 14.19] = [-0.19, 1.27, -1.08]

Write the function summary : (string * float list) list -> (string * float) list.

Answer:

def summary(pairs):

ns = masterList(pairs)

overallAverage = average(ns)

psd = standardDeviation(ns)

def compute(pair):

(name, scores) = pair

dev = average(scores) - overallAverage

return (name, dev / psd)

return map(compute, pairs)

7

2. (8 Points) Write a function permutations : ’a list * int -> (’a list) list such that a call

permutations(symbols, n)

returns a list of all n-length permutations of symbols drawn from symbols. For example, the function
call permutations([0, 1], 3) should return the 8-element list of length-3 lists:

[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1]

[1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]]

The ordering of the list elements is unimportant. This is a challenging problem.

Answer:

def permutations(symbols, n):

if n == 0:

return [[]]

else:

perms = permutations(symbols, n - 1)

almost = map(lambda symbol : map(lambda perm : [symbol] + perm, perms), symbols)

return reduce(operator.concat, almost, [])

8

Section 4 (4 Points)

Let M and N be non-negative integers and consider a data segment Data = [M, N, ...]. Write an SVM
program to compute (isFactor M N) halting with a 0 in register R0 if M is not a factor of N and halting with
a 1 in R0 if M is a factor of N. Feel free to place any values that you want in the data segment after M and N.
(Yes, this is exactly Part A of problem set 7.)

Answer:

data = [M, N]

Lod R0, 0(Zero) # R0 := M

Lod R1, 1(Zero) # R1 := N

Cmp R1, R0 # R1 < R0 ?

Blt 2

Sub R1, R1, R0 # R1 := R1 - R0 (N := N - M)

Jmp -4

Cmp R1, Zero # See R0 is a factor

Beq 2

Li R0, 0

Hlt

Li R0, 1

Hlt

9

10

Instruction Meaning

1. Lod Rd, offset(Rs) Let base be the contents of register Rs and let
address = base + offset. Then register Rd gets the contents of
location address in RAM.

2. Li Rd, number Rd := number.

3. Sto Rs, offset(Rt) Let base be the contents of register Rt and let
address = base + offset. Then RAM location address gets
Rs.

4. Mov Rd, Rs Rd := Rs.

5. Add Rd, Rs, Rt Rd := Rs + Rt.

6. Sub Rd, Rs, Rt Rd := Rs - Rt.

7. Mul Rd, Rs, Rt Rd := Rs * Rt.

8. Div Rd, Rs, Rt Rd := Rs / Rt.

9. Cmp Rs, Rt PSW := Rs - Rt.

10. Beq disp PC := PC + disp if PSW = 0.

11. Blt disp PC := PC + disp if PSW < 0.

12. Bgt disp PC := PC + disp if PSW > 0.

13. Jmp disp PC := PC + disp.

14. Jsr disp RA := PC, PC := PC + disp.

15. R PC := RA.

16. Hlt SVM halts.

Table 1: The SVM Instruction Set. Notation: Rd is a destination register, Rs and Rt are source registers.
All of offset, number and disp are integers.

11

