
Second Exam
CS 101 Computer Science I

KEY
Wednesday March 27, 2013

Instructor Muller
Boston College
Spring 2013

Please write your name at the top. You are allowed to use one 8.5 x 11 sheet of notes. Computers,
calculators, books and notes are prohibited. Partial credit will be given so be sure to show your work.
Please try to write neatly.

Problem Points Out Of

1 3
2 3
3 6/7
4 3
5 3
6 4

Total 22

1

1. (3 Points) The stdaudio library represents an audio signal with 2 channels sampled at 44100 kHz with
individual amplitude samples ranging between -1 and +1. The stduadio library includes a makeSound
function that accepts two lists of amplitude samples and returns a sound. What would you hear from
the following:

>>> ch = [1 for _ in range(88200)]

>>> sound = makeSound(ch, ch)

>>> play(sound)

Silence.

2. (3 Points) Show the state of the stack and the heap after line (1) is complete but before line (2) has
been executed.

def f(a):

b = g(a)

return b

def g(b):

b[0] = 8

c = (4, b) (1)

return c (2)

f([0, 1])

Stack Heap

+---+

| g |

+---+---+

| +---+| +---+

| c| o-++-------------> | 4 |

| +---+| +---+

| b| o-++------+ | o |

| +---+| \ +-+-+

+-------+ \ |

+---+ \ |

| f | \ |

+---+---+ \ v

| +---+| +> +---+

| a| o-++-------------->| 8 |

| +---+| +---+

| b| ? || | 1 |

| +---+| +---+

+-------+

2

3. (6/7 Points) The function isAscending : int list → bool returns True if the input list is in strictly
ascending order. Otherwise it returns False. For example, the call isAscending(range(4)) should
return True. In general, isAscending should return True for any list of length less than 2. The call
isAscending([1, 2, 2, 3]) would return False.

Do problem (a) and either problem (b) or (c) but not both. Problem (c) is worth one extra point.

(a) (3 Points) Write the function isAscending using either a while-loop or a for-loop.

def isAscending(list):

N = len(list)

if N < 2: return True

for i in range(N - 1):

if list[i] >= list[i + 1]:

return False

return True

def isAscending(list):

N = len(list)

if N < 2: return True

i = 0

while i < N - 1:

if list[i] >= list[i + 1]:

return False

i = i + 1

return True

(b) (One-of: 3 Points) Write the function isAscending using recursion.

def isAscending(list):

if len(list) < 2:

return True

elif list[0] >= list[1]:

return False

else:

return isAscending(list[1:])

(c) (One-of: 4 Points) Write the function isAscending without using a while-loop, a for-loop or
recursion.

3

def isAscending(list):

N = len(list) - 1

a = [1 for i in range(N) if list[i] < list[i + 1]]

return sum(a) == N

4

4. (3 Points) A point in the Cartesian plane is represented as a pair (x, y). The distance between two
points (x0, y0) and (x1, y1) is given by the Pythagorean theorem:√

(x0 − x1)2 + (y0 − y1)2

In Python, a point in the Cartesian plane can be represented by a value of type point = float * float.

Write a function distance : point → float such that if p is the point (x, y), the call distance(p)
returns the distance from p to the origin (0, 0). Note that the distance function accepts one argument
that is a pair. It does not accept two arguments. Feel free to use the math.sqrt function.

5. (3 Points) Write a function distances : (float * float) list → float list such that the call dis-
tances([(x1, y1), ..., (xn, yn)]) will return a list of the distances of the points to the origin. Feel
free to use the distance function as a helper even if you weren’t able to write it.

5

6. (4 Points) Write a function within : float * (float * float) list → int such that the call within(d,
[(x1, y1), ..., (xn, yn)]) will return the number of points in [(x1, y1), ..., (xn, yn)] that are strictly
within distance d of the origin.

6

