
First Exam
CS 1101 Computer Science I

Section 04, Spring 2016

Tuesday March 1, 2016
Instructor Muller

KEY

Before reading further, please arrange to have an empty seat on either side of you. Now that you are
seated, please write your name on the back of this exam.

This is a closed-notes and closed-book exam. Computers, calculators, and books are prohibited.

• Partial credit will be given so be sure to show your work.

• Feel free to write helper functions if you need them.

• Please write neatly.

Problem Points Out Of

1 1
2 1
3 2
4 2
5 3 (only two of 5, 6 and 7)
6 3
7 3
8 4 (only two of 8, 9 and 10)
9 4
10 4

Total 20

1

1. (1 Point) For each of the following, indicate what would happen if the code was evaluated in an Python
shell. If the code would produce a value, what value would it produce? If the code would produce an
error, what error?

(a) if (2 + 3) > 4:

return "Boston"

else:

return "College"

Answer:

Boston

(b) def g(z): return z * 2

def f(x, y): return (g x, g z)

f(2, 4)

Answer:

Error: Unbound variable z.

2. (1 Point) For each of the following, indicate what would happen if the code was evaluated in an Python
shell. If the code would produce a value, what value would it produce? If the code would produce an
error, what error?

(a) def f(x, y):

def g(x): return x + y

return g(x + y)

f(3, 4)

Answer:

11

(b) def g(x, y, z): return x + y

def f(x, y): return g()

f(1, 6)

Answer:

Error: wrong number of arguments to g.

2

3. (2 Points) Write a function bump : int -> int that doubles odd numbers and triples even numbers.
For example, the call bump(14) should evaluate to 42 while the call bump(15) should evaluate to 30.

Answer:

bump : int -> int

#

def bump(n):

if (n % 2) == 0:

return n * 3

else:

return n * 2

4. (2 Points) A customer is eligible for a discount if they are under 21 years of age and they have a gold
card or if they are between the ages of 60 and 90. (Ninety one? You’re out of luck.) Write a function
eligible : bool * int -> bool such that a call eligible(goldCard, age) returns True if they
are eligible for a discount and False otherwise.

Answer:

eligible : bool * int -> bool

#

def eligible(goldCard, age):

return (goldCard and age < 21) or (age >= 60 and age <= 90)

3

3 Point Problems – choose only two

Circle the numbers of the two problems that you want graded.

5. (3 Points) The built-in % operator computes the integer remainder. In particular, the expression m % n

evaluates to the integer remainder when m is divided by n. Write mod as a function mod : int * int -> int

such that a call mod(m, n) evaluates to the integer remainder when m is divided by n. Your solution
should not use the built-in operator of the same name. For the purposes of this problem, you may
assume that m and n are non-negative. Hint: consider repeated subtraction.

Answer:

mod : int * int -> int

#

def mod(m, n):

if m < n:

return m

else:

return mod(m - n, n)

6. (3 Points) Write a function snds : (A * B) list -> B list such that a function call snds(pairs)
returns a list of the second components of the pairs. For example, the call snds([(1, ’A’), (2, ’B’)])

should return the list [’A’, ’B’].

Answer:

def snds(pairs):

return map((lambda p : p[1]), pairs)

4

7. (3 Points) Write a function rotateLeft : int * ’a list -> ’a list such that a call rotateLeft(n, xs)

rotates xs leftward n positions. By “rotate” we mean that elements that fall off the left end, migrate
to the right end. For example, the call rotateLeft(3, [’A’, ’B’, ’C’, ’D’]) should evaluate to
the list [’D’, ’A’, ’B’, ’C’]. You may assume that n is non-negative.

Answer:

rotateLeft : int * ’a list -> ’a list

#

def rotateLeft(n, xs):

if n == 0:

return xs

else:

first = xs[0]

rest = xs[1:]

return rotateLeft(n - 1, rest + [first])

5

4 Point Problems – choose only two

Circle the numbers of the two problems that you want graded.

8. (4 Points) It’s Super Tuesday and time to cull the field for the next debate. The debate organizers
have analyzed the polls and gathered summary data in a list of pairs:

candidates = [("Trump", 0.30), ("Rubio", 0.20), ("Cruz", 0.18), ("Carson", 0.02)]

The debate organizers wish to invite only candidates with above average poll numbers. Write a function

cull : (string * float) list -> (string * float) list

such that a call cull(candidates) returns the list of those candidates with above average poll numbers.
For example, on the data above, since the average is 0.175, the cull function would return the list of
three candidates [("Trump", 0.30), ("Rubio", 0.20), ("Cruz", 0.18)].

Answer:

cull : (string * float) list -> (string * float) list

#

def cull(candidates):

ave = average(candidates)

return filter(lambda p : p[1] > average, candidates)

def average(candidates):

numbers = map(lambda p : p[1], candidates)

return reduce(operator.add, numbers, 0) / len(numbers)

6

9. (4 Points) We take our positional numeral system for granted but it was at least a couple of millennia in
the making. The “positions” represent powers of 10 ascending from right to left: ones, tens, hundreds
and so forth. For example, the decimal numeral for the present year, 2016, can be understood as

201610 = 2 × 103 + 0 × 102 + 1 × 101 + 6 × 100

= 2 × 1000 + 0 × 100 + 1 × 10 + 6 × 1

= 2000 + 0 + 10 + 6

= 2016

The system is so robust and flexible that it works for any base. For example, a numeral in base 3 can
be understood in the same way:

2013 = 2 × 32 + 0 × 31 + 1 × 30

= 2 × 9 + 0 × 3 + 1 × 1

= 18 + 0 + 1

= 1910

Write a function toDecimal : int list * int -> int such that a call toDecimal(digits, base)

returns the decimal value of the list of digits. For example, the call toDecimal([2, 0, 1], 3) should
return 19. Feel free to use the a.reverse() function which reverses a list a.

Answer:

toDecimal : int list * int -> int

#

def toDecimal(digits, base):

def repeat(digits, power, acc):

if digits == []:

return acc

else:

digit = digits[0]

digits = digits[1:]

n = digit * (base ** power)

return repeat(digits, power + 1, n + acc)

return repeat(List.rev digits, 0, 0)

7

10. (4 Points) Given a decimal numeral X and base b, how can the numeral X10 be converted to the
equivalent numeral in base b? How might we write a function decimalTo : int * int -> int list

so that a call such as decimalTo(19, 3) would evaluate to the list of digits [2, 0, 1] making up the
base 3 numeral 2013?

Let’s say we have a helper function:

def div(m, n): return (m / n, m \% n)

which computes both the integer quotient and the remainder when m is divided by n. Then we can
proceed in a repetitive process as follows:

div(19, 3) = (6, 1)

div(6, 3) = (2, 0)

div(2, 3) = (0, 2)

In each iteration from one line to the next, the quotient of the previous step moves down to the left
and the successive remainders make up the digits of the answer from right to left. When the quotient
is zero the process is complete. Write the function decimalTo.

Answer:

decimalTo : int * int -> int list

#

def decimalTo(n, base):

def repeat(n, acc):

if n == 0:

return acc

else:

(q, r) = div(n, base)

return repeat(q, [r] + acc)

return repeat(n, [])

8

