First Exam
CS 101 Computer Science I

KEY
Thursday October 9, 2014
Instructor Muller
Boston College
Fall 2014

Before reading further, please arrange to have an empty seat on either side of you.
Now that you are seated, please write your name on the back of this exam.

This is a closed-book exam. Computers, calculators, and books are prohibited. You may use one 8.5 by
11 sheet of notes. Please choose between problems 7 and 8, circling the number of the one you
want graded. In solving problems involving repetition, you are free to use any form that you would like.
Partial credit will be given so be sure to show your work. Please try to write neatly.

Problem Points Out Of

1 3

2 2

3 2

4 2

5 3

6 3

7 5 (one of)

8 5 (one of)
Total 20

1. (3 Points) For each of the following, indicate what would happen if the code was evaluated in a Python
shell. If the code would produce a value, what value would it produce? If the code would produce an
error, what error?

(a) def £(x, y): return (g(x), g(y))
def g(z): return z * 2
(2, 4)

Answer:

(4, 8)

(b) def f(x, y):
def g(x): return x + y
return g(x + 1)
(1, 6)
Answer:

8

(c) def f(x, y): return g()
def g(): return x + y
(1, 6)

Answer:

Error: unbound variable y

2. (2 points) The word millennial is sometimes used to refer to a person born after January 1, 1981 and
before December 31, 1996. Write a function isMillennial : int -> bool that accepts a birth year
and returns True if the person is a millennial. Otherwise it should return False.

Answer:

isMillennial : int -> bool
#
def isMillennial(birthYear):
return (1981 <= birthYear) and (birthYear <= 1996)

3. (2 points) Compounded growth of a quantity is usually expressed as a periodic percentage together with
the number of periods of growth. In particular, a present value pv growing at ¢ percent per period will
grow to pv(1+4)™ over n periods. Write a function futureValue : float * float * float -> float
such that a call futureValue(pv, i, n) will compute the compounded growth over n periods.

Answer:

futureValue : float * float * float -> float
#
def futureValue(pv, i, n):

return pv * (1.0 + 1) ** n

4. (2 Points) Write a Python function downFrom : int -> int list such that a call downFrom(n) pro-
duces the list [n - 1, n - 2, ..., 0]. For example, the call downFrom(5) should evaluate to the

list [4, 3, 2, 1, 0].

Answer:

downFrom : int -> int list PRODUCE A LIST
#
def downFrom(n):

return [n - i - 1 for i in range(n) 1]

5. (3 Points) Write a Python function interesting : a * (a * a -> bool) * a list -> int such
that a call interesting(x, test, xs) returns the number of elements of xs that are in the test
relation with x. For example, assuming that the built-in operator.1t (less than) function is imported,
the expression interesting(5, operator.lt, [3, 4, 5, 6, 7]) would evaluate to 2 because only
list elements 3 and 4 are less than 5.

Answer:

interesting : a * (a * a -> bool) * a list -> int
#
The call interesting(x, test, xs) returns the number of elements
of xs that are in the test(., x) relation with x.
#
def interesting(x, test, xs):
if xs == []:
return O
else:
n = interesting(x, test, xs[1:])
if test(xs[0], x):
return n + 1
else:
return n

6. (3 Points) Write a Python function removeNth : int * a list -> a list such that a call of the
function removeNth(n, xs) returns a list that is just like xs but the nth element has been re-
moved. For example, the call removeNth(0, [10, 20, 30]) should evaluate to [20, 30] while the
call removeNth(2, [10, 20, 30]) should evaluate to [10, 20]. You may assume that the list has an
nth element.

Answer:
removeNth : int * ’a list -> ’a list PRODUCE A LIST
#
def removeNth(n, xs):
if n ==
return xs[1:]
else:

first = xs[0]
return [first] + removeNth(n - 1, xs[1:])

7. (5 Points) Write a Python function middle : int list -> int that accepts an odd-length list of
unique integers and returns the middle integer. For example, the call middle([20, 18, 50, 62, 30])
should evaluate to 30 because there are 2 values less than 30 and 2 values greater. The callmiddle ([10])
should evaluate to 10.

Answer:

middle : int list -> int CONSUME A LIST
#
The call middle(ns) accepts an odd-length list of unique integers. It
returns the one that has an equal number lower and higher.
#
def middle(1st):
triples = [(i, interesting(i, 1t, 1lst), interesting(i, gt, 1st)) for i in 1lst]

def loop(triples):
if triples == []:
return None
else:
(i, smaller, bigger) = triples[0]
if smaller == bigger:
return i
else:
return loop(triples[1:])
return loop(triples)

8. (5 Points) If pic is a stddraw.Picture, the function call pic.filledRectangle(x, y, hW, hH, color)
will add a filled rectangle to pic centered at (x, y) with width twice hW, height twice hH and of color
color.

Write a function cross : Picture * int * int -> void such that a call cross(picture, n, i)
will render randomly colored squares of side 1.0 / n across row i and up column i of the unit square.
For example, executing the code

import stddraw

def testCross():
myPic = stddraw.Picture()
cross(myPic, 5, 2)
myPic.start()

testCross()

would produce the following picture in the graphics window:

tk

Answer:

def cross(picture, n, i):

side = 1.0 / n

halfSide = side / 2.0

fixedXY = (i - 1) * side + halfSide

def loop(m):

if m > 0:

varyingXY = (m - 1) * side + halfSide
color = picture.randomColor()
picture.filledRectangle(fixedXY, varyingXY, halfSide, halfSide, color)
color = picture.randomColor()
picture.filledRectangle(varyingXY, fixedXY, halfSide, halfSide, color)
loop(m - 1)

loop(n)

