
Representing Information 
 
Writing Words and Numbers 
 
The First Software? 
 
The Sumerians were ancient inhabitants of the southern part of present-day Iraq.  Until 
about 150 years ago, no one knew that they had ever existed.  Unlike the Babylonian 
civilization that succeeded them in Mesopotamia, they are not mentioned either in the 
Bible or in the writings of the ancient Greeks.  Only after a series of archaeological 
excavations, beginning in the late nineteenth century, unearthed the remnants of a rich 
culture, did we come to realize that these people, lost to history for many centuries, 
created what may have been the world’s first great civilization. 
 
Some 5000 years ago the Sumerians had one of the greatest ideas that anyone has ever 
had. They invented a way to represent the language they spoke with a fixed inventory of 
graphic symbols. The Sumerians were not the only people to independently come up with 
the idea of writing, but as far as we know, they were the first. 
 

 

Sumerian Tablet, ca. 3000 BC

 
 
While this course is about computers, part of its purpose is to get you to think about 
technology and the role it has played in human history.  Think now about writing: It is an 
odd sort of technological advance, if you compare it to other great inventions like the 
wheel, metallurgy, agriculture, and electric lighting.  The Sumerians, who had little in the 
way of stone or metal, wrote by pressing their characters with a stick into soft clay tablets 
that were then baked in the sun.  But whether writing is  pressed into clay, carved on a 
stone wall, written with pen and ink on paper, traced in puffs of smoke by a skywriting 
airplane, or made up of glowing dots on a computer screen, anyone who knows the code 
can decipher the message.  The invention is not the physical thing, but the coding system 
itself. 



 
Writing is not a hardware invention—it’s software.  Of course, terms like “software” and 
“information technology” are used exclusively to refer to something having to do with 
computers.  But schemes for representing and manipulating information,  inventions that 
are entirely logical, rather than  physical, have been with us for a very long time. 
 
Number Systems 
 
Even if you don’t have to come up with the idea of writing all by yourself---let’s say that 
someone tells you, “Here is how we Sumerians remember our kings’ names, and how to 
make beer, and what to buy at the grocery store”—devising a useful writing system for 
your own language is a difficult task. Compared to inventing a good system for writing 
words, inventing a reasonable way to write numbers is a snap. 

 
 
That’s four.  No problem. 
 

 
That’s forty-four, and that is a problem, since the reader has to count all the marks the 
writer made.  A reader who knows how to count by 5’s has an easier time with this: 
 

 
But the burden is still on the writer to make all those strokes. And if you have a lot more 
strokes it can become hard to read as well. 
 



Big numbers can be hard to get your head around, but people do get the hang of it.  We 
learn the habit of thinking in terms of larger groups, and groups of groups, etc.  Sooner or 
later someone will get the idea of taking one of those blocks of five strokes and replacing 
it by a single symbol, and then representing five of those symbols by yet another  symbol, 
etc. 
 
 The hieroglyphic number-writing system of ancient Egypt works exactly this way, 
except the basic quantity for grouping is ten rather than five.  The first few symbols are: 
 

 
 
 
   
You wrote a number, say two hundred seventeen, simply by grouping the appropriate 
numbers of 1 symbols, 10 symbols, 100 symbols, etc.  It doesn’t much matter in this 
system what order you group the symbols in---you can put the tens above the ones, or 
below them, or to the right or the left. 
  
 
 



 
 
 

Look closely at this Egyptian hieroglyphic inscription 
and you can see the numbers 23 and 15 in the top row, 
and 18 in the bottom row. 

 

 

 



It is interesting to compare this to the system we presently use for writing numbers. The 
string of symbols "459" is interpreted to mean 4x100 + 5x10 + 9x1.  Our number system 
is positional, which means that a single symbol, like 4, can represent 4, or 40, or 400,… 
depending upon its position.  This is in marked contrast to the additive Egyptian system, 
in which the positions are irrelevant.  Thus a positional system uses a fixed collection of 
symbols— in our case the digits 0 through 9--to represent arbitrarily large quantities, 
while in Egyptian you need to introduce a new symbol for each successive power of ten.  
A positional system pretty much forces you to include a symbol that does not add to the 
value of the number but simply holds a position---a zero. 

Both our system and the Egyptian one are  base ten, or radix ten, or decimal systems:  the 
symbols in the Egyptian system are all powers of ten, and the symbols in our system are 
weighted by powers of ten, depending upon the position. The reason for using powers of 
ten is surely because people counted on their fingers, but there's nothing special about ten 
in the mathematical sense; any whole number larger than 1 would do just as well as a 
base.  Positional number systems were invented independently in several different 
cultures. The earliest appearance was in Babylonian culture in  Mesopotamia around 
1900 BC, and there was an independent development in Mesoamerica, among the Olmec 
and Maya peoples.  The Babylonians, incidentally, used a base 60 system, and the 
Mesoamericans  base 20. Our own positional system originated in India around the 8th 
century AD and traveled to Europe via the Arab world. (That’s why we call them Arabic 
numerals, or sometimes Hindu-Arabic numerals.) 

 

Detail from the “Dresden Codex”, showing four 
 numbers written in Maya positional number system 

 

________________________________________________________________________ 



Bits and Bytes 
 
Attorney:  OK, let's prepare you for your testimony.  Do you know what color my dress 
is?  
Client: It's blue.  
Arrorney: Wrong!  My dress is blue, but the right answer is "yes".  

 
 
The smallest amount of information that you can give, and still give some information, is 
the answer to a single yes-or-no question, to distinguish between two alternatives.  This 
amount of information is called a bit.  You can represent the two possible values of a bit 
of information by the words "yes" and "no", or "true" and "false", or "on" and"off", but 
they are usually denoted by the digits 1 and 0.  In fact the word "bit", which was coined 
in the early 1940's by John Tukey, comes in part from the meaning "just a little bit of 
information", but is also a contraction of "binary digit".  (Tukey, who must have had 
quite a flair for inventing new words, also coined  "software".)  

Bits, Bytes, Kilobytes, and Such 

 
There are two possible values of a single bit, 4 possible values for a sequence of two bits 
(that is, 00, 01, 10 or 11), 8 possible values for a sequence of 3 bits, ....In general,  there 
are 2k different sequences of k bits.  

Information stored in computers is usually given in chunks of 8 bits.  A chunk of 8 bits is 
called a byte.  (The etymology of the term is uncertain; it first surfaced in IBM technical 
reports in the 1950's.)  There are thus 28=256 possible different values for a byte.  

Powers of two come up so often in this subject that it is useful to have a table of them 
around: 

n 2n n 2n

0 1 11 2048 
1 2 12 4096 
2 4 13 8192 
3 8 14 16384 
4 16 15 32768 
5 32 16 65536 
6 64 17 131072 
7 128 18 262144 
8 256 19 524288 
9 512 20 1048576 
10 1024 21 2097152 

 



A kilobyte, by rights, ought to mean one thousand bytes, but everything with computers 
goes by powers of two In practice one is much more likely to encounter a chunk of 210 = 
1024 bytes than a chunk of 1000 bytes, so a kilobyte (KB) is 1024 bytes. If you look at 
the "Properties" of a Windows file that contains between 1024 and one million bytes  of 
data, you'll see the size given in both KB and bytes, so you can verify this.  

Likewise, a megabyte (MB) is 220 =  1048576 bytes, and a gigabyte (GB)  is 230 , or 
about 1.07 billion bytes.  The text in this document, which I’m preparing in Microsoft 
Word, would ordinarily take up about 20KB, but what with all the pasted-in pictures and 
such it requires about 200KB.  The now nearly obsolete floppy diskettes everyone used to 
carry around held about 1MB,  a CD about 700 MB, a DVD about 5 GB, the hard disk on 
the computer on which I'm typing this document about 40GB.  

If you have a dialup Internet connection, then your modem transfers, at best, 56 kilobits 
per second.  (I confess that I am uncertain whether a kilobit means exactly 1000 bits or 
1024 bits; I’m pretty sure it’s 1000 bits.)  My home DSL connection will get up to about 
70 KB/second on a good day.  

 

Hexadecimal Notation 

 
It's hard to read a sequence of bits like 11011001 and tell at a glance that it is different 
from 11010001.  So people who have to look at bit patterns a lot use a human-readable 
scheme called "hexadecimal" , which represents each block of 4 bits by a single symbol:  



 

Block of 
four bits 

Hexadecimal 
equivalent 

0000 0 
0001 1 
0010 2 
0011 3 
0100 4 
0101 5 
0110 6 
0111 7 
1000 8 
1001 9 
1010 A 
1011 B 
1100 C 
1101 D 
1110 E 
1111 F 

 
Note that in the left-hand column of the  table above, the sixteen different bit patterns are 
listed in alphabetical order (under the assumption that 0 precedes 1 in the alphabet).  We 
want to use a single conventional symbol for each pattern, so we switch from digits to 
letters when we run out of digits. This might lead you to wonder why we just didn’t start 
with A and use only letters—but there’s a good reason, as you’ll see shortly. 

A single byte is made up of two blocks of four bits, and thus can be represented by two 
hexadecimal symbols---two "hex digits", in the lingo.  The two bytes at the beginning of 
this section would be represented as D9 and D1.  

 
Writing Numbers with Bits 
 
As mentioned above, any whole number greater than 1 can be used as the base of a 
positional number system. In our decimal positional system, there are ten digits: 
0,1,2,…,9.  In a base five system, there are only the five digits 0,1,2,3,4.  The positions in 
a string of digits are weighted by powers of five.  So the string 
 
4013 
 
is the base five representation of the number 
 
4x53+0x52+1x51+3x50=4x125+0x25+1x5+3x1, 



 
which is five hundred and eight.  This is annoying and confusing, since when you see 
“4013” you really, really want to say “four thousand thirteen”, but we are giving an 
entirely different interpretation to such strings of digits.  To make things absolutely clear, 
we will sometimes write   
 
40135
 
to mean “the number whose base five representation is the string 4013”.  (This theme of 
different coding systems giving different interpretations to the same sequence of symbols 
comes up again and again.) 
 
The smallest possible base of a positional number system is  two. A base two system is 
said to be a binary system. There are only two digits, 0 and 1, which explains the term 
“binary digit” as the meaning of “bit”.  The positions are weighted by the powers of two: 
1,2,4,8,16,etc.  So, for example, 
 
11001001 
 
has 1’s in the positions corresponding to 1,8,64 and 128, and thus represents the number  
 
128+64+8+1, 
 
or two hundred and one.  Again, we could write something like 
 
110010012 = 20110
 
to be absolutely clear about how the symbols are meant to be interpreted.  
 
Base Conversion 
 
In general, if you need to find the decimal representation of a number given in binary, 
you can proceed as above, starting at the right, and writing the successive powers of two 
under the bits of the number: 
 
1 0 1 1 0 1 1 0 1 
256 128 64 32 16 8 4 2 1 
 
256+64+32+8+4+1=365 
 
Then just add up the powers of two that correspond to positions containing a 1. This 
shows 1011011012=36510
 
Here is another method (another algorithm).  Write down the value 0.  Then begin at the 
leftmost bit and read from left to right.  At each successive bit, either double the value 



you’ve written (if the bit is zero) or double it and add 1 (if the bit is 1).  The table below 
illustrates this algorithm. 
 
 1 0 1 1 0 1 1 0 1 
0 1=2x0+1 2=2x1 5=2x2+1 11=2x5+1 22=2x11 45 91 182 365 
 
What if you want to go in the other direction? If you have the number in some familiar 
format, like decimal notation, how do you compute its binary representation? 
 
Algorithm 1.  (Left-to-right.)Make a table with three rows.  In the first row, write the 
powers of two from right to left, until you exceed the value of the number N you are 
trying to represent.  Then, write the number N in the first column of the second row. 
Beginning  at the leftmost column, repeatedly perform the following operation: Subtract 
the value in the first row of the next column from the value in the second row of the 
current column.  If the result is zero or more, write the difference in the second row of the 
next column and 1 in the third row. Otherwise, just copy the value in the second row of 
the current column to the second row of the next column, and write ‘0’ below it. The 
binary representation  of N appears in the last row of the table.  The example below 
illustrates the computation of the binary representation of four hundred eighty-three. 
 
512 256 128 64 32 16 8 4 2 1 
483 227=483-

256 
99=227-
128 

35 3 3 3 3 1  

 1 1 1 1 0 0 0 1 1 
 
Algorithm 2.  (Right-to-left.) Make a table with two rows.  Write N in the rightmost 
column of the first row.  At each step, divide the value in the first row by 2, writing the 
quotient to its left, and the remainder below it.  Repeat until you get a quotient of 0.  The 
binary representation appears in the last row. 
 
 
0 1 3 7 15 30 60 120 241 483 
 1 1 1 1 0 0 0 1 1 
 
 
Hexadecimal Notation, Again 
 
Observe that the block  1001 of four bits corresponding to the hex digit 9 really is the 
binary representation of nine.  Similarly, the block 0101 of four bits corresponding to hex 
5 really does represent five in binary, since the zero at the left doesn’t change the value.  
And the bit strings corresponding to the hex digits A,B,C,D,E,F are just the binary 
representations of the numbers ten through fifteen.  
 
This means that you can think of the hex digits as the numbers 0 through fifteen, and of a 
string of hex digits as the base sixteen representation of a number.  With this 
interpretation, a string like 



 
D3A 
 
Represents 13x162+3x16+10 = 3386 
 
Now remember that hexadecimal notation was just supposed to be a convenient way of 
writing strings of bits, so that D3A is just shorthand for  
 
0110100111010. 
 
This string of bits is itself the binary representation of a number, and that number is 3386.  
There’s not much difference between base two and base sixteen representations of 
numbers:  Each hex digit is just an abbreviation for a block of four bits.  It’s a simple 
matter to translate between the two representations (just remember that if you are 
translating from binary to hex to first add enough bits at the left so that the number of bits 
is a multiple of four). 
 
Arithmetic 
 
Suppose you want to add the two numbers  
 
110110012
 
and 
 
110100012, 
 
and express the answer in binary.  It’s tempting to begin by translating these into some 
more familiar representation, like decimal, add them the usual way, and then convert 
back into binary. 
 
But there’s no reason to do this! The very same algorithms that you learned in elementary 
school for adding and multiplying work in any base.  For addition, you just have to keep 
in mind  that in binary 1+1=10 and 1+1+1=11, so you have to carry  whenever you add 
two or more 1’s: 



 
 
   1       1               1         
  1 1 0 1 1 0 0 1 
 +1 1 0 1 0 0 0 1 
1 1 0 1 0 1 0 1 0 
 
The little red bits in the example show where carries were performed.   
 
Now there’s an important point to be made here, one that explains why we spend our 
time learning about this stuff:  It is easy to build a machine that carries out addition  as 
illustrated above, quite a lot easier than trying to manipulate the decimal digits of the 
numbers directly.  A machine that has to perform many such calculations can do them all 
in binary.  Base conversion only has to occur at the end of the process, when the results 
are shown to humans. 
 
 Multiplication is no harder.  In fact multiplication and long division are much 
easier to do in binary than in decimal, because there are no multiplication tables to 
memorize, and absolutely no guesswork involved in determining which digits to write in 
the quotient in a division problem. 
 
          1 1 0 1 
        X 1 0 1 1 
          1 1 0 1 
        1 1 0 1 
  + 1 1 0 1______ 
  1 0 0 0 1 1 1 1 
 
_______________________________________ 
 
Writing Text with Bits 
 
One of the themes of this course is that all information manipulated by computers is 
represented by bits.  That includes ordinary text.  Let’s see how this is done. 
 
A computer keyboard (at least the one I’m working on now) has 47 keys for typing 
characters, and two characters per key, giving a total of 94 different characters.  An 
ordinary text document will also have to include information about spacing and line 
breaks, so provisions need to be made for special “whitespace characters”, but the total 
number of characters is about a round one hundred.   



 
Now you can’t represent one hundred different values with 6 bits, since that gives you 
only 26=64 possible patterns, but you can get one hundred different patterns with 7 bits, 
and still have some space left over. 
 
The standard method for representing characters by bit strings actually uses eight bits---
that is, one byte--- to represent each character, but the highest-order (the leftmost) bit is 
always zero, so it really is a seven-bit representation.  This coding scheme is called 
ASCII, which stands for “American Standard Code for Information Interchage” and is 
pronounced “asky”. The character codes are given in the table below. 
 
   Dec Hex Sym    Dec Hex Char  Dec Hex Char  Dec Hex Char 
   -----------    ------------  ------------  ------------ 
    0   0  NUL     32  20        64  40  @     96  60  ` 
    1   1  SOH     33  21  !     65  41  A     97  61  a     
    2   2  STX     34  22  "     66  42  B     98  62  b     
    3   3  ETX     35  23  #     67  43  C     99  63  c     
    4   4  EOT     36  24  $     68  44  D    100  64  d     
    5   5  ENQ     37  25  %     69  45  E    101  65  e     
    6   6  ACK     38  26  &     70  46  F    102  66  f     
    7   7  BEL     39  27  '     71  47  G    103  67  g     
    8   8   BS     40  28  (     72  48  H    104  68  h     
    9   9  TAB     41  29  )     73  49  I    105  69  i     
   10   A   LF     42  2A  *     74  4A  J    106  6A  j     
   11   B   VT     43  2B  +     75  4B  K    107  6B  k     
   12   C   FF     44  2C  ,     76  4C  L    108  6C  l     
   13   D   CR     45  2D  -     77  4D  M    109  6D  m     
   14   E   SO     46  2E  .     78  4E  N    110  6E  n     
   15   F   SI     47  2F  /     79  4F  O    111  6F  o     
   16  10  DLE     48  30  0     80  50  P    112  70  p     
   17  11  DC1     49  31  1     81  51  Q    113  71  q     
   18  12  DC2     50  32  2     82  52  R    114  72  r     
   19  13  DC3     51  33  3     83  53  S    115  73  s     
   20  14  DC4     52  34  4     84  54  T    116  74  t     
   21  15  NAK     53  35  5     85  55  U    117  75  u     
   22  16  SYN     54  36  6     86  56  V    118  76  v     
   23  17  ETB     55  37  7     87  57  W    119  77  w     
   24  18  CAN     56  38  8     88  58  X    120  78  x     
   25  19   EM     57  39  9     89  59  Y    121  79  y     
   26  1A  SUB     58  3A  :     90  5A  Z    122  7A  z     
   27  1B  ESC     59  3B  ;     91  5B  [    123  7B  {     
   28  1C   FS     60  3C  <     92  5C  \    124  7C  |     
   29  1D   GS     61  3D  =     93  5D  ]    125  7D  }     
   30  1E   RS     62  3E  >     94  5E  ^    126  7E  ~     
   31  1F   US     63  3F  ?     95  5F  _    127  7F  � 

 

 
 
Here are a few things to note about this coding scheme: 
 



You might want to encode a digit character, like ‘7’, by the number 7 itself.  But in fact, 
as you can see, the encoding of ‘7’ doesn’t have much to do with the value 7, and 
certainly the encoding of a letter like ‘B’ has nothing to do with the value eleven 
represented by the hex digit ‘B’.  On the other hand, the digits are encoded in order, so 
for example the encoding of ‘7’ is indeed three more than the encoding of ‘4’.  Likewise, 
the upper-case letters are  represented in alphabetical order by consecutive code values, 
and so are the lower-case letters.  You’ll notice that a few characters were inserted 
between the upper- and lower-case letters.  This is actually to make the process of 
conversion between lower and upper case simpler---you’ll see what I mean if you write 
down the encodings of ‘B’, ‘C’, ‘b’ and ‘c’ in binary. 
 
The first thirty-three values encode non-printing characters.  Some of these are familiar, 
like SP (encoded by 32), which stands for “space”, and HT  ( encoded by 9), which 
stands for “horizontal tab”,  but most of them are obscure.  They refer to functions (like 
“line feed” and “form feed”) of printing equipment that was in common use when the 
ASCII code was invented.  
 
Since we’ve used eight bits to encode what we could have encoded in seven, there is a 
significant amount of waste.  We could fit 14% more text on a compact disk if we 
eliminated that extra bit.  Now there is a good reason to have an 8-bit encoding---as we 
shall see, computers are built in such a way as  to manipulate data in byte-sized chunks, 
and it would actually take longer to extract  characters if you had two parts of different 
characters stored in a single byte.  But the point is still an important one---in situations 
where we care more about storage resources than computation time, it makes sense to try 
to squeeze the information into fewer bits. We will take up this matter when we talk 
about data compression. 
 
This system is heavily biased towards the English language.  While many other languages 
use the same Roman alphabet as English, most of them use special accent marks on the 
letters (like ñ  in Spanish, and ç in French).  Turkish has the letter ı (a dotless i) as well as 
İ (dotted upper-case I).  And, of course, many widely used languages use different scripts 
entirely.  Some, like Chinese, use thousands of different characters.  In an effort to 
internationalize the representation of characters by bits, a new standard has been 
developed, called Unicode.  Unicode uses 16 bits (two bytes) to represent each character.  
The Unicode representation of ‘0’ is 003016, and similarly for all the standard ASCII 
characters:  The leftmost eight bits are all zero and the rightmost eight bits are the usual 
ASCII representation.  The Unicode representations of that Spanish ñ (00F1) and French 
ç (00E7) as well as  many other variant Roman characters likewise have the leftmost 
eight bits all zero, but have the next bit equal to 1. The code for the Turkish  ı (0131) does 
not fit into a single byte, and the basic Chinese character set in Unicode uses all the 
values 4E00 and 9FBF. 
______________________________________________________ 
 



Endnotes 
 
1. Sumerians and the invention of writing. True writing is the representation of spoken 
language by graphic symbols.  It need not necessarily represent the words phonetically--
although all writing systems, including Chinese, do contain at least some phonetic 
elements.    The earliest tablets from Sumer seem to be in a kind of picture-writing in 
which a symbol resembling, say, an eye might signify an eye, or seeing, or some related 
concept, but does not stand for an actual spoken word.  The transition from such proto-
writing to true writing took several centuries. However, once the idea of true writing 
spreads to other language communities, writing systems for new languages can be 
developed fairly quickly, without having to go through the proto-writing stage.  Probably 
most of the scripts used throughout the world were developed in this way. 
 
The question of who first invented writing does not have a completely clear answer—it’s 
uncertain when the transition from picture-writing to true writing in Sumer actually took 
place, and whether inscriptions from Egypt or the Indus Valley in India might be earlier 
examples of true writing. 
 
2. Mesopotamian  Number Systems.  The Sumerians used a base sixty system, but it was 
an additive number system, like that used by the Egyptians, rather than a positional one.  
The original positional number system of the Babylonians actually did not have a zero:  
Zeros in the least significant positions (for us, at the right-hand end of the number) could 
be dropped---this would be like representing fourteen, one hundred forty, one thousand 
four hundred, etc., all by the string 14---it was assumed the reader could infer the correct 
order of magnitude from the context. Zeros in the interior of a number were more of a 
problem.  With a base sixty system you don’t run across them too often, since there’s 
only a one in sixty chance that a randomly chosen three-digit number will require a zero 
in the middle digit.  On at least one tablet, the scribe left a little extra space between the 
digits to indicate where a zero would ordinarily go. 
 
3. Mesoamerican Number Systems.  Since the Maya system is a base 20 positional 
system, each digit represents a number between zero and nineteen.  The symbol that 
looks like an eye or a shell is zero; the other digits are made from a combination of lines 
and dots, with a dot representing 1 and a line 5.  The multi-digit numbers in the 
illustration are written with the most significant digit at the top. If you ever find yourself 
in Cancun on Spring Break and are sober enough to look out the window of the buses that 
drive along the main road, you’ll see Mayan numerals on the highway kilometer sings. 
 
Most extant samples of  Mayan writing are engraved on stone. Almost all of the books on 
paper were destroyed by Spanish missionaries; the Dresden codex illustrated in the notes 
is one of the few that survive. 
 
The great intellectual achievements of Mesoamerican civilization are traditionally 
attributed to the Maya, but there is a recent current of thought suggesting that the Olmec 
people may have been the “mother civilization”, and the originators of both writing and 
the positional number system.  The jury still seems to be out on this. 



 
4. The conversation between the attorney and client really did take place. (Reported to me 
by the client.) 
 
5. “A machine that has to perform many such calculations can do them all in binary.  
Base conversion only has to occur at the end of the process, when the results are shown to 
humans.”  We’ll say a bit more about this later when we talk about the history of 
computing machines. Modern computer experts take binary for granted, but this point 
was not obvious to the designers of the earliest electrical and electronic computers, who 
preferred to build machines that did all the work in decimal.   
 
 
 
Sources for the historical information contained in these notes: 
 
The Sumerians, by Samuel Noah Kramer 
 
A Universal History of Numbers, by Georges Ifrah 
 
“Oldest New World Writing Suggests Olmec Innovation”, Erik Stokstad in Science 
Magazine, vol. 298, Dec. 2002. 
 
Also, a very good History of Mathematics website at St. Andrews University in Scotland, 
with many links and references to printed literature: www-history.mcs.st-andrews.ac.uk 
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