Recovering Transformations

What if we know \(f \) and \(g \) and want to recover the transform \(T \)?

- e.g. better align images from Project 1
- willing to let user provide correspondences
 - How many do we need?

Slides from Alexei Efros
Translation: # correspondences?

How many correspondences needed for translation?

How many Degrees of Freedom?

What is the transformation matrix?

\[
T(x,y) = \begin{bmatrix}
1 & 0 & p'_x - p_x \\
0 & 1 & p'_y - p_y \\
0 & 0 & 1
\end{bmatrix}
\]

Slides from Alexei Efros
Euclidian: # correspondences?

How many correspondences needed for translation+rotation? How many DOF?

Slides from Alexei Efros
Affine: # correspondences?

How many correspondences needed for affine?
How many DOF?

Slides from Alexei Efros
How many correspondences needed for projective?
How many DOF?

Slides from Alexei Efros
Example: warping triangles

Given two triangles: ABC and A’B’C’ in 2D (12 numbers)
Need to find transform T to transfer all pixels from one to the other.

What kind of transformation is T?
How can we compute the transformation matrix:

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Slides from Alexei Efros
Image warping

Given a coordinate transform \((x',y') = T(x,y)\) and a source image \(f(x,y)\), how do we compute a transformed image \(g(x',y') = f(T(x,y))\)?

Slides from Alexei Efros
Forward warping

Send each pixel $f(x,y)$ to its corresponding location $(x',y') = T(x,y)$ in the second image.

Q: what if pixel lands “between” two pixels?

Slides from Alexei Efros
Forward warping

Send each pixel $f(x,y)$ to its corresponding location $(x',y') = T(x,y)$ in the second image.

Q: what if pixel lands “between” two pixels?
A: distribute color among neighboring pixels (x',y')
 - Known as “splatting”
 - Check out `griddata` in Matlab

Slides from Alexei Efros
Inverse warping

Get each pixel $g(x',y')$ from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image.

Q: what if pixel comes from “between” two pixels?
Inverse warping

Get each pixel $g(x',y')$ from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image.

Q: what if pixel comes from “between” two pixels?

A: Interpolate color value from neighbors
 - nearest neighbor, bilinear, Gaussian, bicubic
 - Check out `interp2` in Matlab

Slides from Alexei Efros
Forward vs. inverse warping

Q: which is better?

A: usually inverse—eliminates holes
 • however, it requires an invertible warp function—not always possible...
The aim is to find “an average” between two objects

- Not an average of two images of objects…
- …but an image of the average object!
- How can we make a smooth transition in time?
 – Do a “weighted average” over time \(t \)

How do we know what the average object looks like?

- We haven’t a clue!
- But we can often fake something reasonable
 – Usually required user/artist input

Slides from Alexei Efros
Idea #1: Cross-Dissolve

Interpolate whole images:

\[\text{Image}_{\text{halfway}} = (1-t)\text{Image}_1 + t\text{image}_2 \]

This is called cross-dissolve in film industry

But what is the images are not aligned?

Slides from Alexei Efros
Idea #2: Align, then cross-dissolve

Align first, then cross-dissolve

• Alignment using global warp – picture still valid

Slides from Alexei Efros
Dog Averaging

What to do?
- Cross-dissolve doesn’t work
- Global alignment doesn’t work
 - Cannot be done with a global transformation (e.g. affine)
- Any ideas?

Feature matching!
- Nose to nose, tail to tail, etc.
- This is a local (non-parametric) warp

Slides from Alexei Efros
Idea #3: Local warp, then cross-dissolve

Morphing procedure:

for every t,

1. Find the average shape (the “mean dog” 😊)
 - local warping
2. Find the average color
 - Cross-dissolve the warped images

Slides from Alexei Efros
Local (non-parametric) Image Warping

Need to specify a more detailed warp function

- Global warps were functions of a few (2, 4, 8) parameters
- Non-parametric warps $u(x, y)$ and $v(x, y)$ can be defined independently for every single location x, y!
- Once we know vector field u, v we can easily warp each pixel (use backward warping with interpolation)
Image Warping – non-parametric

Move control points to specify a spline warp
Spline produces a smooth vector field

Slides from Alexei Efros
Warp specification - dense

How can we specify the warp?

Specify corresponding spline control points

- *interpolate* to a complete warping function

But we want to specify only a few points, not a grid

Slides from Alexei Efros
Warp specification - sparse

How can we specify the warp?

Specify corresponding *points*

- *interpolate* to a complete warping function
- How do we do it?

How do we go from feature points to pixels?

Slides from Alexei Efros
1. Input correspondences at key feature points
2. Define a triangular mesh over the points
 - Same mesh in both images!
 - Now we have triangle-to-triangle correspondences
3. Warp each triangle separately from source to destination
 - How do we warp a triangle?
 - 3 points = affine warp!
 - Just like texture mapping
Triangulations

A triangulation of set of points in the plane is a partition of the convex hull to triangles whose vertices are the points, and do not contain other points. There are an exponential number of triangulations of a point set.
An $O(n^3)$ Triangulation Algorithm

Repeat until impossible:

- Select two sites.
- If the edge connecting them does not intersect previous edges, keep it.
We know how to warp one image into the other, but how do we create a morphing sequence?

1. Create an intermediate shape (by interpolation)
2. Warp both images towards it
3. Cross-dissolve the colors in the newly warped images
Warp interpolation

How do we create an intermediate warp at time t?

- Assume $t = [0,1]$
- Simple linear interpolation of each feature pair
- $(1-t)p_1 + tp_0$ for corresponding features p_0 and p_1