1) In the following situations, indicate whether \(f = O(g) \) or \(f = \Omega(g) \), or \(f = \Theta(g) \). Prove your result.

(a) \(f(n) = n - 100 \), \(g(n) = 2n - 200 \).
(b) \(f(n) = 100n + \log n \), \(g(n) = n + (\log n)^2 \).
(c) \(f(n) = n \log n \), \(g(n) = 10n \log 10n \).
(d) \(f(n) = 10 \log n \), \(g(n) = \log(n^2) \).
(e) \(f(n) = n^{1.01} \), \(g(n) = n \log^2 n \).
(f) \(f(n) = n^2 / \log n \), \(g(n) = n(\log n)^2 \).
(g) \(f(n) = \sqrt{n} \), \(g(n) = (\log n)^3 \).
(h) \(f(n) = 2^n \), \(g(n) = 3^n \).
(i) \(f(n) = (\log n)^{\log n} \), \(g(n) = 2^{(\log n)^2} \).

2) Show that, if \(c \) is a positive real number, than \(g(n) = 1 + c + c^2 + ... + c^n \) is:

(a) \(\Theta(1) \) if \(c < 1 \).
(b) \(\Theta(n) \) if \(c = 1 \).
(c) \(\Theta(c^n) \) if \(c > 1 \).

3) Use induction method to show that Fibonacci number \(F_n \) grows exponentially and to find some bound.

(a) Prove that \(F_n \geq 2^{0.5n} \) for \(n \geq 6 \).
(b) Find a constant \(c < 1 \) such that \(F_n \leq 2^{cn} \) for all \(n \geq 0 \). Prove your result.
(c) What is the largest number \(c \) you can find for which \(F_n = \Omega(2^{cn}) \).

4) Consider a \(2^n \times 2^n \) chess board with one arbitrary tile removed.

(a) Using induction method, prove that any such board can be tiled without gaps using L-shaped pieces, each composed of 3 squares.
(b) Write a recursive program to print out the tiling.