N2VIS: An Interactive Visualization Tool
for Neural Networks

Matthew J. Streeter

Matthew O. Ward

Sergio A. Alvarez

Department of Computer Science
Worcester Polytechnic Institute

Abstract

We describe N*VIS, an interactive visualization tool
for feedforward neural network populations trained
through evolutionary computation. N*VIS provides vi-
sualization of network attributes including topology,
connection weights, weight volatility, and nodal acti-
vation levels for specific input values, as well as of
genealogical relationships between different networks.
Changes to network parameters can be made interac-
tively by the user during training, and their effects are
immediately visualized. These features contribute to
making N?VIS an effective visualization tool for de-
signers, users, and students of neural networks.

1 Introduction

Artificial neural networks (ANN) are models of
adaptive distributed computation with roots in neuro-
biology. ANN’s have been used with great success in
a variety of domains to solve problems involving func-
tion approximation or classification, e.g. [8, 5, 12]. In
its simplest form, a (feedforward) ANN can be consid-
ered to be a weighted directed acyclic graph with spe-
cially labeled node sets for input and output signals.
Application of specific signal values to the inputs of
an ANN evokes a specific activation level at each node
of the ANN; this activation level is determined by the
input values to the network and by the activation lev-
els of the nodes feeding into the given node, weighted
by the weights of the connections between nodes. In
this way, the nodes of an ANN operate collectively
to define a nonlinear mapping from inputs to outputs
parameterized by the connection weights.

Adaptation in ANN’s consists of a suitable strategy
for adjusting the weights in a way that optimizes some
domain-dependent measure of performance. Strate-
gies for supervised adaptation in ANN’s include error
backpropagation [4, 10] and evolutionary computation

[1, 11, 9]. In the latter approach, weights from differ-
ent individuals of an entire population of networks are
combined in a process that resembles reproduction,
complete with operators for recombination, mutation,
and subsequent selection based on performance.

In the present paper we describe N2VIS, an interac-
tive visualization tool for feedforward neural networks
trained through evolutionary computation. Our work
addresses the visualization of individual networks as
well as that of the genealogical relationships between
different networks in the population. Our experiences
using N2?VIS show that it can be an effective tool for
designers and users of ANN systems, as well as a valu-
able resource for students learning about ANN.

1.1 Relation to Previous Work

Existing techniques for visualization of neural net-
work weights include Hinton diagrams and Bond di-
agrams, e.g. [6]. Hinton diagrams provide a box-like
display of network weights that does not reveal net-
work topology. Bond diagrams superimpose a visual
depiction of connection weights on a planar projection
of the network graph, thus conveying topological infor-
mation. However, neither of these approaches includes
a mechanism for the visualization of nodal activation
values. N2VIS, the tool described in the present paper,
displays network topology and connection weights, as
well as nodal activation levels for specific values of
the input signals. A key difference from preceding
work is that we address the visualization of family re-
lationships arising from the evolutionary adaptation
process. The volatility of the weight of a given con-
nection, a measure of the change in the value of the
weight with respect to its value in the previous gener-
ation, is also displayed visually. Furthermore, N2VIS
allows the user to interactively adjust training param-
eters during adaptation; the results of this interaction
are immediately available to the user in visual form,
thus providing important cues that aid in understand-



ing the process and results of adaptation.

2 Feedforward Neural Network Visu-
alization

Figure 1 depicts a feedforward neural network
drawn from a population trained to determine the par-
ity of a four bit number. The network is presented
both as a weighted graph and in compact matrix form.

The graph representation consists of a number of
black circles, each of which represents a node, a
set of line segments that connect nodes, representing
weights, and a short bar running perpendicular to each
weight, representing its volatility. Each row of circles
represents a layer of nodes in the network, with the
top row representing the input layer, the bottom row
the output layer, and all other rows corresponding to
hidden layers. The network depicted in Figure 1 has
four inputs, one output, and two hidden layers of two
nodes each.

In this representation, the diameter of the white
circles inside each node has been mapped on a sig-
moid scale to the node’s activity level. The values
of the weights have been linearly mapped to both
the length of the colored portion of the line segment
and the brightness of the color in which it is drawn,
with the hue of this color encoding the sign of the
weight: cyan for positive and red for negative (see
color plate). A similar length and coloring scheme has
been used in the short, perpendicular bars to indicate
weight volatility, only without the mapping to hue,
since volatility is an unsigned quantity.

The visualization in Figure 1 is part of a “Network
Editor” window accessible for any network in the pop-
ulation history. This window allows the user to load
and save networks, to refine a network via backpropa-
gation, and to manually adjust the weights using each
colored bar as a slider.

3 Compact Matrix Representation

The three colored matrices depicted in the lower
right corner of Figure 1 represent an enlarged version
of the compact matrix representation for the network
discussed in the previous section. Matrix n, starting
from n=1 on the left, represents the set of weights run-
ning from layer n to layer n+1 in the network, with
n=1 corresponding to the top layer. The color used
to fill the square in row y, column x of matrix n rep-
resents the weight of the connection from node y of

layer n to node x of layer n+1, and is the same color
that is used to draw the colored portion of the line seg-
ment representing this weight (see color plate). This
representation has the convenient property that the

Figure 1: Network trained to determine the parity of
a four bit number

multiplication of the matrices in the compact repre-
sentation yields the final transformation matrix for a
network using the linear activation function F(x)=x.
We note that the compact matrix representation em-
ployed here bears a superficial resemblance to glyphs
as previously used to visualize multidimensional data
sets [2]; however, in the present case the representa-
tion is more directly related to the known structure of
the networks being considered.

4 Heredity Visualization

The purpose of the compact matrix representation
is to allow many networks to be displayed on the screen
at once. In Figures 2 and 3, we present the output of
two visualizations designed to take advantage of this:
the “Generations” window (Figure 2), which organizes
all the networks in the population history by genera-
tion, and the “Family Tree” window (Figure 3), which
depicts the family tree for a specific network.

Figure 2 illustrates the first six generations of a pool
of networks trained to predict the performance of a
CPU based on six inputs, including cache size, main
memory size, and MHz rating (data taken from [3]).
Each generation is represented by a row of compact
matrices, presented from left to right in decreasing
order of fitness. The user may select any of the net-
works in the population history by clicking on the cor-
responding matrix. Once a network has been selected,
menu options are available to bring up the “Network



Editor” or “Family Tree” windows for the selected net-
work. Additionally, when a network is selected, a se-
ries of links are drawn within the “Generations” win-
dow to connect the network to its ancestors. The green
lines in this visualization denote parentage; white lines
indicate survival from one generation into the next.
There are no white lines in this particular illustration
(see color plate).

Figure 3 illustrates the family tree for the network
selected in figure 2. Each row of compact matrices is
presented at the maximum allowable size (pixels per
colored square) given the available window width and
the number of networks that must be displayed.

5 Results

Our experiments have shown this visualization tool
to be of use in four areas: manually designing networks
to solve problems, determining the shape of the error
surface for a particular problem and topology, under-
standing the phenomenon in evolutionary computa-
tion known as genetic drift, and extracting domain
knowledge from the operation of a network. Each of
these areas is elaborated upon below.

The ability of each of the colored bars in the graph-
ical network visualization to act as a slider allows the
user to attempt to manually design a neural network
or to refine an existing one. Though manual design of
neural networks to solve problems is for the most part
impractical, such efforts may aid the understanding
of the operation of a neural network in the case of a
simple problem domain.

A key factor in determining the success or failure of
an evolutionary algorithm is the shape of the error sur-
face in which the algorithm is supposed to find a global
minimum. In addition to the “Network Editor” “Fam-
ily Tree” and “Generations” windows described above,
this tool provides a simple 2D plot of fitness vs. time,
making it easier for the user to gauge the progress of
the evolutionary algorithm. In Figure 6, for example
(see color plate), we observe the existence of several
plateaus in the error surface, some lasting over 100
generations. Another interesting and unforeseen in-
sight into the error surface is provided by sliding the
weights of a network while running the backpropaga-
tion algorithm. The backpropagation algorithm per-
forms a gradient-based search for a local optimum on
the error surface. Therefore, when a weight is dragged
to a new location while this algorithm is running, it
will sometimes “snap back” to its original location as
soon as it is released, as the algorithm returns to the
same local optimum it was in before the weight was

adjusted. At other times, however, the adjustment of
one weight will cause many others to shift dramati-
cally in response, as a new local optimum is found. It
is thus possible using this tool to estimate the length
of a local optimum on the error surface with respect
to each of the axes in weight space.

Another use of this tool is in understanding genetic
drift, defined as the tendency for all the members of an
artificial population to converge to a single solution,
in contrast to biological evolution, where many species
compete within a single ecosystem. To understand
why this phenomenon occurs, it is helpful to refer to
Figure 2, in which, after only six generations, all of

R A 5 R

Figure 2: First five generations of a pool of networks
trained to predict CPU performance

Figure 3: Family tree for selected (lower left) network
in Figure 2

the networks in the population can be seen to be very
similar. In Figure 2, it can readily be seen that the



initial population (generation 0), whose weights have
been randomly initialized, contains a great deal of di-
versity. This diversity is maintained for the first four
generations, after which a single network, though pos-
sessing only a minor fitness advantage over its neigh-
bors, is rapidly able to dominate the population. The
best (leftmost) network in generation 3 is clearly a
parent of the best network in generation 4. Though
it is not shown in the figure, this network is also a
grandparent of all but the two worst networks in gen-
eration 5, and an ancestor of all the networks in all
generations to come. Were more generations shown,
we would see that the populations under this evolu-
tionary algorithm tend to consist of a set of almost
identical members, a few of which occasionally mutate
into a slightly more optimal form, and rapidly convert
the rest of the population into their own image.

Figure 8 on the color plate presents a network
trained to predict the average market value of houses
in a development based on 13 inputs, including prop-
erty tax rate, student/teacher ratios, and distance to
major employment centers [3, 7]. This network has the
convenient feature that the weights emanating from
the last two layers are all positive, so that the sign
of the weights emanating from a specific input node
gives a direct indication of the influence that node is
having on the final output. Looking at input node (1),
for example, which corresponds to the area crime rate,
we see that all the weights flowing out of the node are
negative, which suggests that higher crime rates tend
to reduce the value of a house. Likewise, examination
of input node (6), the average number of rooms per
dwelling, tells us that houses with more rooms tend
to be worth more. In principle, this type of analysis
could be applied to a problem domain for which no a
priori knowledge exists.

6 Limitations

The primary limitation of this visualization tool
is that the graphical feedforward network depiction
we have presented does not scale well to networks
with large numbers of nodes. Already in the network
trained for the housing value problem (Figure 8, color
plate) this problem is somewhat apparent; in larger
networks it becomes even more pronounced. Addition-
ally, the use of the sigmoid scale to display nodal ac-
tivation values has made it difficult to distinguish be-
tween activations whose sigmoids are close, but which
numerically are far apart (e.g. 10.0 and 20.0). The
sigmoid scale was chosen due to the absence of an up-
per bound on nodal activations; in practice a linear

or logarithmic scale with a cutoff value may be more
appropriate.

7 Future Work

The problem of scalability in the graphical network
visualization could be addressed via selective zooming
and/or clustering of nodes. To further explore the po-
tential of this tool as an educational device to explain
evolutionary computation, a variety of evolutionary
algorithms (different breeding and selection schemes)
could be integrated into the package. To broaden the
applicability of this tool, network architectures other
than feedforward could be displayed both in graphical
and compact matrix form. Rigorous evaluation should
also be carried out.

8 Conclusions

We have found this visualization tool to be useful
both as an educational device, to aid in the under-
standing of neural networks, search spaces, and ge-
netic drift, and as a practical tool for solving complex
problems with neural networks. We have been able to
extract problem-specific knowledge by examining the
graphical depiction of a network provided by N2VIS.
We have found the interactive training environment to
be a great help in successfully solving problems with
neural networks, and we believe that this work has
relevance in other graph visualization domains, such
as network traffic data. An executable demo of the
N2VIS system described in this paper is available at
http://www.wpi.edu/~mjs/mqp/notes/NNVis.zip.

Acknowledgements

The authors thank Soraya Rana for helpful discus-
sions and for providing a program for evolutionary
strategies that was modified for use in the system de-
scribed in this paper.

References

[1] T. Béack. Evolutionary Algorithms in Theory and Prac-
tice, Oxford U. Press, 1995.

[2] J. Beddow. Shape coding of multidimensional data
on a microcomputer display. Proc. Visualization ’90,
IEEE Computer Society Press, pages 238-246, 1990.



3]

[4]

[6]

(8]

[9]

C.L. Blake, C.J. Merz.

UCI Repository of machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html,
University of California, Irvine, Dept. of Information
and Computer Sciences, 1998.

A E. Bryson, Y.-C. Ho. Applied Optimal Control and
Estimation. Blaisdell, 1969.

K. Chellapilla, D.B. Fogel. Evolving neural networks
to play checkers without relying on expert knowledge.
IEEE Transactions on Neural Networks, Vol. 10, no.
6, pages 1382 - 1391, Nov. 1999.

M.W. Craven, J. Shavlik. Visualizing learning and
computation in artificial neural networks. Interna-
tional Journal on Artificial Intelligence Tools, Vol. 1,
pages 399-425, 1991.

D. Harrison, D.L. Rubinfeld. Hedonic prices and the
demand for clean air. Journal of Environmental Eco-
nomics and Management, Vol. b, pages 81-102, 1978.

S. Makeig, T.-P. Jung, T.J. Sejnowski. Using Feed-
forward Neural Networks to Monitor Alertness from
Changes in EEG Correlation and Coherence. in Ad-
vances in Neural Information Processing 8, MIT Press,
pages 931-937, 1996.

G. Miller, P. Todd, S. Hegde. Designing Neural Net-
works Using Genetic Algorithms. Proc. Third Interna-
tional Conference on Genetic Algorithms, pages 379-
384, 2000.

[10] D.E. Rumelhart, G.E. Hinton, R.J. Williams. Learn-

ing Representations by Back-Propagating Errors. Na-
ture, Vol. 323, pages 533-536, 1986.

[11] H-P. Schwefel. Ewvolution and Optimum Searching.

Wiley Interscience, 1995.

[12] S.X. Yang, M. Meng. An efficient neural network ap-

proach to dynamic robot motion planning. Neural Net-
works, Vol. 13, No. 2, pages 143-148, March 2000.



Generation

Figure 4. Network trained to determine the parity of a Figure 5. Fitness plot for pool of networks trained to
four bit number test for winning position on a tic-tac-toe board

Figure 6. First five generations of a pool of networks Figure 7. Family tree for selected (lower left) network
trained to predict CPU performance in Figure 6

Figure 8. Network trained to predict the average market value of houses in a development



