
CS243, Prof. Alvarez 1 PROPOSITIONS

Prof. Sergio A. Alvarez http://www.cs.bc.edu/∼alvarez/
Maloney Hall, room 569 alvarez@cs.bc.edu
Computer Science Department voice: (617) 552-4333
Boston College fax: (617) 552-6790
Chestnut Hill, MA 02467 USA

CS243, Logic and Computation

Propositional Logic

1 Propositions

A propositional statement or proposition is a statement that is unambiguously either true
or false in a given context. Examples include: George Washington was born in Arizona
(false), 2 + 3 equals 5 (true), and Some humans are reptiles (false). The truth or falsity of
a given proposition is called its truth value. Statements that involve a subjective judgment,
such as Bob is a good guy, are not propositional statements.

A well-formed boolean expression in a programming language such as Python is a concrete
embodiment of a proposition. The following example uses an equality test to construct a
boolean expression:

>>> for i in range(0,10):

... if i%3 == 1:

... print i

...

1

4

7

As you know from Python, propositions can also be built using boolean operators (e.g.,
p and q, where p and q are boolean variables). The truth value of such a proposition
depends on the truth values of the symbols (boolean variables) that appear in it, and on the
meanings of the particular operators used to combine these symbols. The most commonly
used operators are not, and, or, with the usual meanings (“truth tables”) described below
using list comprehension notation in Python.

>>> [not x for x in [False,True]]

[True, False]

>>> [x and y for x in [False,True] for y in [False,True]]

[False, False, False, True]

>>> [x or y for x in [False,True] for y in [False,True]]

[False, True, True, True]

We’ll describe propositions more formally below, in terms of a language with well-defined
syntax (form, grammar) and semantics (meaning, truth). A recurring theme in this course is
that formal descriptions provide transparency and allow proving assertions beyond a shadow
of a doubt. The use of propositional logic for modeling purposes will also be discussed.



1.1 Syntax: recursive definition of proposition 1 PROPOSITIONS

1.1 Syntax: recursive definition of proposition

Start with a finite collection P of propositional symbols (boolean variables) (typically p, q, r,
and so forth). We will define the set of propositions over P (also known as propositional
formulas over P ) as follows. Note that the precise ordering of symbols will be important,
and that parentheses are explicitly required as indicated in each case.

1. (Basis) The basic propositions (also known as atomic formulas) over P are of the
following two types:

(a) The constant symbols true and false are (basic) propositions over P .

(b) Every propositional symbol (variable) in P is a (basic) proposition over P .

2. (Recursion) If p and q are propositions over P (not necessarily variables), then so is
each of the following: (not p), (p and q), (p or q).

3. (Closure) Every proposition over P can be obtained from the basic propositions defined
above by a finite number of applications of the recursive rules.

Parse trees. The syntactical structure of a proposition can be understood by drawing its
parse tree, which is a tree that has the boolean operators as internal nodes, and propositional
symbols as leaves. The root of the parse tree is the outermost operator, that is to say, the
last operator to be applied in constructing the propositional formula. For example, the
proposition below

((not p) and q) or (r and (not q))

has the following parse tree:
or

and

not

p

q

and

r not

q

1.2 Semantics: truth assignments and evaluation

Truth assignments. Let P be a set of propositional symbols. A truth assignment over
P is a function t : P → false, true that assigns a truth value to each symbol in P . For
example, consider the following propositions:

p: The patient is over 50 years old.

q: The patient has a history of heart problems.

These propositions could be either true or false depending on the patient. Each of
the possibilities can be represented by a truth assignment to the symbols p and q. For
example, for a 20-year old patient with no prior heart problems, one would consider the
truth assignment t(p) = false, t(q) = false.



1.2 Semantics: truth assignments and evaluation 1 PROPOSITIONS

Semantics of boolean operators: truth tables. A k-ary boolean operator, that is, an
operator that takes k arguments, is just a function f : {false, true}k → {false, true}.
Specifically, such an operator is uniquely determined by the truth values that it assigns to
all of the possible combinations of false, true for its arguments. This truth function that
represents the operator is also known as the truth table of the operator, in reference to a
table listing with one combination of input values and corresponding truth value per row.
The truth tables for not, and, or appear below.

>>> [not x for x in [False,True]]

[True, False]

>>> [x and y for x in [False,True] for y in [False,True]]

[False, False, False, True]

>>> [x or y for x in [False,True] for y in [False,True]]

[False, True, True, True]

Truth value of a complex proposition: recursive definition. Suppose that t is a
truth assignment to a set P of propositional symbols. The truth value with respect to t of
any propositional statement over P is then defined as follows.

1. (Basis) The truth value of each basic proposition is as given directly by t.

2. (Recursion) If p and q are propositions over P with truth values t(p), t(q), then
t(not p) = notf(t(p)), t(p and q) = andf(t(p),t(q)); t(p or q) = ort(t(p),t(q)),
where opf in each case is the truth table for the operator op.

For example, consider a patient for which t(p)=false, t(q)=false above, and consider
the following proposition:

z: (p or (not q))

The recursive extension of the truth assignment simply states that the corresponding
truth value for z is obtained by “plugging in” the truth values for t into the definition of z:

t(z) = orf(t(p), notf(t(q))) = orf(false, notf(false)) = orf(false,true) = true

Boolean satisfiability. A propositional formula is satisfiable if there is some truth assign-
ment that makes its truth value true. A propositional formula is a tautology if every truth
assignment makes its truth value true.

Equivalent formulas. Two propositional formulas F and G are said to be equivalent if
they have the same truth table. In other words, F and G are equivalent if (and only if) they
have the same truth value t(F ) = t(G) for each truth assignment t of the set of propositional
variables that appear in F and G. An equivalent statement is that F and G are equivalent
formulas if, and only if, the formula F ↔ G is a tautology.



1.3 Alternative notation for boolean operators 1 PROPOSITIONS

1.3 Alternative notation for boolean operators

Negation. not p is often written as ¬p or as ∼ p or as p.

Conjunction (and). (p and q) is often written (p∧ q) or as (pq). The latter notation is
consistent with the fact that ordinary multiplication on the values 0, 1 as representations of
the logical values false, true produces the same results as and.

Disjunction (or). (p or q) is often written (p ∨ q) or as (p + q). The latter notation
is consistent with the fact that addition on the values 0, 1 as representations of the logical
values false, true produces the same results as or (all nonzero values are interpreted as
being true).

Logic gate notation is also used, particularly in the context of digital hardware. An
example appears in Fig. 1. The small triangle with a single input and a ball at the output
end represents negation, while the two-input gates represent conjunction (flat input end)
and disjunction (rounded input end). The circuit’s output at the far right is “on” (true)
because the and gate’s output is on for the given input values A=0, B=1, C=0.

Figure 1: Sample boolean logic circuit. Screenshot from Logisim.

1.4 Dropping parentheses: precedence rules.

The strict use of all formally required parentheses gets tedious, and it is therefore customary
to relax the rules a bit. Doing so requires agreeing on what is to be done in cases of ambiguity
(multiple interpretations of what is intended). For example, consider this propositional
formula:

not p and q

This could easily mean either of the following:

((not p) and q)

(not (p and q))



1.5 Additional boolean operators 1 PROPOSITIONS

The two options are not equivalent. For example, if both p and q are false, then the
upper formula is false, while the lower formula is true. Because of this ambiguity, we need
to agree on which of the two options is to be used. The usual convention is that not binds
more tightly than any binary operator (e.g., and, or). Hence, the original formula would be
interpreted as the upper option here. By convention, each binary operator associates from
left to right. For example, the formula

p and not q and r

is equivalent to the fully parenthesized version

(p and ((not q) and r))

1.5 Additional boolean operators

Implication. (p→ q), read “p implies q”, is shorthand for ((not p) or q).

>>> [not p or q for p in [False,True] for q in [False,True]]

[True, True, False, True]

Equivalence. (p↔ q) is shorthand for ((p→ q) and (q → p)).

>>> [(not p or q) and (not q or p) for p in [False,True] for q in [False,True]]

[True, False, False, True]

Exclusive OR. p⊕q, read “p x-or q”, is shorthand for ((p and (not q)) or ((not p) and q)).
This coincides with mod 2 addition on the values 0, 1.

>>> [(p and not q) or (not p and q) for p in [False,True] for q in [False,True]]

[False, True, True, False]

1.6 Complete sets of boolean operators.

A set S of boolean operators is complete when any truth table can be obtained as the truth
table of a formula written using only boolean operators from among those in S. We will give
a few examples of complete sets of boolean operators below.



1.6 Complete sets of boolean operators. 1 PROPOSITIONS

p1 p2 p3 T (p1, p2, p3)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Table 1: Sample truth table. 1, 0 represent true, false.

Negation, conjunction, and disjunction. DNF and CNF. We claim that any truth
table is the truth table of a formula in which the only boolean operators are ¬, ∧, ∨. To
see this, consider an arbitrary truth table T that corresponds to a formula with k distinct
propositional variables p1, · · · , pk. Therefore, T will have an entry (truth value) T (t) for
each of the 2k possible truth assignments, t, of p1, · · · pk. Each such truth assignment is an
ordered sequence (t(p1), · · · , t(pk)) of the truth values true and false assigned to the various
pi by t. We will concoct a formula F in which ¬, ∧, ∨ are the only operators, such that F
has the same truth table, T . To do so, we first form a smaller formula Ft for each row of the
truth table, that is, for each truth assignment, t:

Ft =
∧

{i|t(pi)=true}

pi ∧
∧

{i|t(pi)=false}

¬pi

This formula just describes the particular truth assignment, t, by requiring that each propo-
sitional variable have the appropriate truth value that is given to it by that truth assignment.
The formula that will represent the entirety of T simply combines the formulas Ft of the
rows t for which T (t) = true:

F =
∨

{t|T (t)=true}

Ft

This completes the proof of the completeness of the set {¬, ∧, ∨}. By the way, any formula
like F above that is an OR of ANDs, where each AND portion includes only variables and
their negations, is said to be indisjunctive normal form (DNF).1

For example, consider the truth table for three propositional variables p1, p2, p3 in Ta-
ble 1.6. The corresponding DNF formula using only negation, conjunction, and disjunction
appears below:

(¬p1 ∧ ¬p2 ∧ p3) ∨ (¬p1 ∧ p2 ∧ p3) ∨ (¬p1 ∧ ¬p2 ∧ p3) ∨ (¬p1 ∧ p2 ∧ ¬p3)

There is also a conjunctive normal form (CNF), which is an AND of ORs, where each
OR portion only includes variables and their negations. This can be obtained from the DNF
version of the negation of the formula in question. See the Exercises.

1Not to be confused with a disappointing outcome in some athletic events.



2 SOME ALGORITHMS IN PROPOSITIONAL LOGIC

Implication and negation. We claim that the set {¬, →} is a complete set of boolean
operators. Since the set {¬, ∧, ∨} was already shown above to be complete, it is enough to
show that each of the three boolean operators ¬, ∧, ∨ can be represented in terms of the
boolean operators ¬, →. We do this below.

1. ¬ is automatically representable, since we are including it in the set that we intend to
show completeness of.

2. Since (¬p) ∨ q is equivalent to p→ q, we see that p ∨ q is equivalent to (¬p)→ q.

3. Since ¬(p ∧ q) is equivalent to ¬p ∨ ¬q by DeMorgan’s law, and since ∨ can be repre-
sented in terms of ¬ and→ as shown above, it follows that there is a formula in terms
of ¬ and → that represents ∧. What is it?

This completes the proof of the completeness of the set {¬, →}.

Negated conjunction (NAND). The NAND of two propositional formulas is the nega-
tion of their conjunction. We will denote the NAND of p and q simply as NAND(p, q). The
standard logic circuit symbol for NAND is shown in Fig. 2.

Figure 2: NAND gate. Screenshot from Logisim.

We will show that the set consisting of only NAND is a complete set of boolean operators.
In other words, NAND gates suffice to construct any combinational logic circuit. In order
to show completeness of {NAND}, it is enough to show that each of the three operators of
the complete set {¬, ∧, ∨} can be represented in terms of NAND.

1. ¬ is easy to represent: ¬p is equivalent to NAND(p, p).

2. ∧ is now easy, too: p∧q is equivalent to ¬(p NAND q), and ¬ is representable in terms
of NAND (above).

3. In light of the above, ∨ can be represented in terms of NAND by using DeMorgan’s
laws.

2 Some algorithms in propositional logic

2.1 Evaluation of propositional formulas

Theorem 2.1. The truth value of a propositional formula may be computed in at most Cn2

steps, where n is the length of the formula and C is a finite constant independent of n.



2.1 Evaluation of propositional formulas2 SOME ALGORITHMS IN PROPOSITIONAL LOGIC

Proof. Algorithm 1 provides a specific way to evaluate a propositional formula. The strategy
followed is simply to successively evaluate the leftmost complete subformula by referring to
the truth table for the appropriate operator.

Algorithm 1: Boolean propositional evaluation
Input: propositional formula, φ; truth assignment, t, to the variables of φ
Output: the truth value t(φ) of φ under t
evaluate(φ, t)
(1) while the length of φ is greater than 1
(2) let i be the index of the leftmost ’)’ in φ
(3) let j be the index of the rightmost ’(’ among j < i
(4) replace the substring φj···i by its truth value t(φj···i)
(5) return φ

Here is a sample run of a program that implements Algorithm 1. The top line shows
the original formula, and successive lines show the reduced formula obtained by replacing
the leftmost subformula at each stage. Truth values are represented as 0 and 1 in order to
simplify string processing.

(1>((((0v1)^(1v0))^(1^0))>0))

(1>(((1^(1v0))^(1^0))>0))

(1>(((1^1)^(1^0))>0))

(1>((1^(1^0))>0))

(1>((1^0)>0))

(1>(0>0))

(1>1)

1

As you can infer from this example, the number of iterations of the algorithm (lines
in the sample run) is less than n, the length of the original formula, because each iteration
reduces the length of the formula. Each iteration requires finding the leftmost subformula and
replacing it with its truth value. Let’s break this per-iteration time down further: scanning
for the leftmost ’)’ takes at most n steps, finding the matching ’(’ takes just three or four
steps; replacing the subformula can take a number of steps proportional to n, depending on
the internal string representation used. In any case, the per-iteration time is at most Cn for
some finite constant C. It follows that the total number of steps needed by the algorithm is
at most Cn2, as claimed. Sample elapsed times for different formula lengths appear below.
The ratio between consecutive lengths in this list is approximately 2.

length, time (s)

33, 8.29696655273e-05

69, 0.000124931335449



2.2 Satisfiability of propositional formulas2 SOME ALGORITHMS IN PROPOSITIONAL LOGIC

141, 0.000247001647949

285, 0.000566959381104

573, 0.0011088848114

1149, 0.0022439956665

2301, 0.00455713272095

4605, 0.00929999351501

9213, 0.0196549892426

18429, 0.0431261062622

36861, 0.107383966446

73725, 0.287739038467

147453, 0.87535905838

294909, 4.60914897919

589821, 14.7984681129

1179645, 49.4246001244

2359293, 182.577973843

4718589, 685.218982935

9437181, 2976.95564008

2.2 Satisfiability of propositional formulas

Theorem 2.2. There is an algorithm that solves the problem of determining if a given
propositional formula is satisfiable, and runs in at most Cn22k steps, where n is the length
of the input formula, k is the number of boolean variables in the input formula, and C is a
finite constant independent of n and k.

Proof. Algorithm 2 solves the satisfiability problem very straightfowardly, by trying all
possible truth assignments: if any one of these makes the input formula true, the algorithm
reports that the formula is satisfiable; if none of the candidate truth assignments makes the
formula true, then the algorithm reports that the formula is not satisfiable.

Algorithm 2:
Input: a propositional formula, φ
Output: true if φ is satisfiable, false otherwise
isSatisf(φ)
(1) determine the set of distinct variables in φ
(2) foreach truth assignment t of the variables in φ
(3) if t(φ) is true
(4) return true
(5) return false

How many steps are required by Algorithm 2? Finding the variables in the input formula,
φ, can be accomplished in one pass over the formula: a list is kept of the variables encountered
so far, and each symbol of φ is examined to see if it is either an operator or constant or else
if the symbol belongs to the list of variables so far. If the list of variables is represented as an
array, a membership test requires examining at most as many positions as variables. Thus,
counting the distinct variables in φ takes at most Cnk steps for some finite C, where k is the



3 APPLICATIONS OF PROPOSITIONAL LOGIC

total number of variables, and that is less than Cn22k. There are 2k truth assignments of
the k variables in φ. Extending any such truth assignment to φ itself can be accomplished in
Cn2 steps, by Theorem 2.1. It follows that the total number of steps required for the main
loop in the algorithm is at most Cn22k. This completes the proof.

3 Applications of propositional logic

3.1 Proving that code is correct

A loop invariant for a particular loop construct within a program is a propositional statement
that evaluates to true each time the loop guard condition is evaluated. The use of loop
invariants allows proving iterative code to be correct (or discovering that it needs to be
fixed).

3.1.1 Example: accumulating a sum

For example, consider the following code:

>>> sum = 0

>>> i = 1

>>> while i <= 20:

... sum = sum + i

... i = i + 1

Let p denote the propositional statement

The value of the sum variable is the sum of all integers between 0 and i − 1,
inclusive.

Invariance of p. The above proposition p is true when the loop is first entered, as the
values when the loop condition is first evaluated are sum=0, i=1. Assuming that p is true
on a given pass, it will also be true on the next, as sum will now have accumulated the value
i just before i is incremented by 1. It follows by induction that p is true each time the loop
condition is evaluated. That is, p is a loop invariant for the above loop. This fact allows one
to conclude that the value of sum will be the sum of all integers between 1 and 20 after the
loop, since the loop condition is last evaluated when i is 21.

3.1.2 Example: decoding binary positional notation

Consider the problem of determining the (decimal integer) value of a string of binary digits
in standard (unsigned) binary positional notation. For example, the bit sequence 11001
represents the value 24 + 23 + 20 = 25. Here is a Python function that performs this
conversion, assuming that the original bit sequence is given in the form of a list such as
[1, 1, 0, 0, 1].



3.1 Proving that code is correct 3 APPLICATIONS OF PROPOSITIONAL LOGIC

>>> def readBinary(bits):

... n = 0

... while len(bits) > 0:

... n = 2*n + bits[0]

... bits = bits[1:]

... return n

We will find a loop invariant for the main loop in this function, and use it to show the
correctness of the function itself.

Discovering a loop invariant. Consider the process of converting [1, 1, 0, 0, 1] to an
integer, as followed in the above function readBinary. We show the values of the variables
n and bits each time the loop entry condition is evaluated:

n bits

0 [1, 1, 0, 0, 1]

1 [1, 0, 0, 1]

3 [0, 0, 1]

6 [0, 1]

12 [1]

25 []

What we need is a boolean propositional statement that is true on each of the lines in
any run of the function, the above example included. This statement should be phrased in
terms of the variables n and bits. In order to develop an intuitive idea of what may work,
notice in the above example that the bits list gets shorter as the value of n increases. This
suggests that there may be some combination of the two that doesn’t change from one line
to the next. What is it? Well, you see that the bits are being accounted for in decreasing
order of significance, starting with the most significant bit: the value of n at each point of
the computation reflects the bits that have been accounted for so far. Thus, on the first line
no bits have been accounted for, and the value of n is 0, while on the third line, the two
most significant bits have been accounted for somehow by the value 3 for n. The remaining
bits, 001, have yet to be “folded into” n. Intuitively, the total numerical value of the original
bit string is spread across the value of n so far, on one hand, and the remaining bits, on the
other. How would one reconstruct this numerical value on any given line? The remaining
bits should be taken at face value: they represent powers of 2 according to their position
within the list. The current value of n, however, will actually end up representing a larger
magnitude in the final answer, since it will be doubled on each subsequent pass through the
loop body. By fleshing out this thought process, one concludes that the following statement
should be true whenever the loop entry condition is evaluated:

The numerical value n0 of the original bit string may be recovered as 2len(bits)n
plus the numerical value represented by bits.



3.1 Proving that code is correct 3 APPLICATIONS OF PROPOSITIONAL LOGIC

Proving invariance of the proposed invariant. We’ve done the first task of formulating
the loop invariant carefully. That should facilitate the job of actually proving its invariance
beyond a shadow of a doubt. Let’s go. We will prove that the proposed loop invaiant is
true whenever the loop condition is evaluated. We will do this by induction in the number
of previous evaluations of the loop entry condition.

• (basis) Suppose that the loop entry condition has not yet been evaluated at all. In
that case, bits contains the full original bit string that was passed to the readBinary

function, and n has the value 0. Therefore, the proposed loop invariant states that the
numerical value n0 of the original bit string may be recovered as 0 plus the numerical
value represented by the original bit string. Can’t argue with that.

• (inductive step) Suppose that the loop entry condition has previously been evaluated
some number of times, and that it has had the value true each one of those times.
We claim that the loop condition will also be true the next time that it is evaluated.
Since the loop condition evaluated to true on the previous evaluation, this means
that, if p was the length of bits at that time, and if n was the value of n on the
previous evaluation, then the numerical value represented by the original bit string
may be expressed as 2pn plus the numerical value represented by bits on the previous
evaluation. Accounting for the most significant bit bits[0] among those remaining,
this value is the same as 2pn plus 2p−1bits[0] plus the numerical value represented by
bits[1:], which can be expressed as 2p−1(2n + bits[0]) plus the numerical value
represented by bits[1:]. However, because of the way in which bits and n are
updated in the loop body, the exponent p − 1 is precisely the length of the updated
bit string, and 2n + bits[0] is precisely the updated value of n; these values are the
ones in place at the time of the current evaluation. We therefore conclude that the
numerical value of the original bit string equals 2current len(bits) times the current value
of n plus the numerical value represented by the current value of bits. This proves
the inductive step, and completes the proof of the invariance of the proposed loop
invariant.

Using the loop invariant to prove correctness of the binary to decimal integer
function. In the end, there is a particular interest in showing that programs actually
behave the way that they should. Here, we will show that readBinary(L) actually does
what it is supposed to, namely that it returns the numerical value of the bit string contained
in the list L. This is pretty easy at this point, since we have a good invariant in hand. We know
that, at each evaluation of the loop entry condition during the invocation readBinary(L),
the numerical value represented by the bits in L may be expressed as follows:

value of L = 2len(bits)n+ numerical value of current bits list

We know also that the final evaluation of the loop entry condition occurs when that loop
entry condition evaluates to false for the first time. That occurs when the bits list is empty,
which represents a numerical value of 0. At that point, the loop invariant is true, as it is



4 EXERCISES

at the time of each loop entry evaluation, and states the following: the numerical value
represented by the bits in L is equal to

value of L = 20n+ 0 = n

Since the value n is returned immediately after this final loop condition evaluation, the
function correctly performs its job.

4 Exercises

1. Provide a detailed definition by recursion for the parse tree of a propositional statement,
based directly on the definition of propositional statement.

2. Prove in detail that a propositional formula is satisfiable if, and only if, its negation is
not a tautology.

3. Show that every formula is equivalent to a formula in conjunctive normal form. Hint.
First, find a DNF formula that is equivalent to the negation of the target formula, as
described in these notes, and then use DeMorgan’s laws.

4. Implement Algorithm 1 as a program (script) in Python. Submit documented source
code and screenshots from sample runs.

5. Consider the following Python code (shown on the command line, so ignore the prompt
symbols and other punctuation):

>>> p=0

>>> while n>=1:

... p = p+1

... n = n/2

(a) Define a loop invariant for the loop shown, as a specific expression in terms of n
and p. Explain.

(b) Prove by induction that the expression from the preceding part has the same
value every time the loop condition is evaluated.

(c) Express the final value of p when the loop is exited in terms of the initial value
of n. Explain.


