Mining over loosely coupled data sources
using neural experts

Sergio A. Alvarez
Computer Science Dept.
Boston College
Chestnut Hill, MA 02467 USA

alvarez@cs.bc.edu

ABSTRACT

Artificial neural networks (ANN) are capable of extracting
patterns from multidimensional data and are natural can-
didates for use in multimedia data mining. However, error
backpropagation training of a standard fully connected ANN
can be slow. In this paper we present an ANN architecture
that enables faster backpropagation training in the presence
of multiple loosely coupled data sources. We show that this
architecture can achieve classification performance similar to
that of a standard fully connected feedforward ANN while
speeding up training by a significant factor.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Learning; 1.5.1 [Pattern
Recognition]: Models—Neural nets; 1.5.2 [Pattern Recog
nition]: Design Methodology—Classifier design and eval-
uation; 1.5.5 [Pattern Recognition|: Implementation—
Special architectures

General Terms

Design, experimentation, performance

Keywords

Data mining, machine learning, neural networks, experts

1. INTRODUCTION

In the present paper we are interested in Artificial Neural
Networks (ANN) as a technology for data mining over data
from multiple sources. Such data abound within multimedia
data mining [11]. ANN have been applied in related con-
texts with success. For example, in [2], an ANN classifier is
applied to the problem of detecting tumors in digital mam-
mography images; in [3], ANN are used for text mining, in
order to extract “typical messages” from e-mail discussions
in a computer—supported collaborative work environment.
A recent collection of papers on ANN techniques for multi-
media data processing is available in [5].

The copyright of these papers belongs to the paper’s authors. Permission
to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page.

MDM/KDD’08, August 27, 2003, Washington, DC, USA.

Takeshi Kawato
Computer Science Dept.
Worcester Polytechnic Institute Worcester Polytechnic Institute
Worcester, MA 01609 USA

takeshi@wpi.edu

Carolina Ruiz
Computer Science Dept.

Worcester, MA 01609 USA
ruiz@cs.wpi.edu

‘We are concerned in particular with reducing the complexity
of training ANN for use in classification and regression tasks
involving multiple data sources. Toward this end, we employ
an ANN architecture that is adapted to multisource data.
In this architecture, which we call a “mixture of attribute
experts”, the set of input attributes (or a set of features ex-
tracted from the input attributes) is partitioned into disjoint
subsets corresponding to data sources. Each of these subsets
is fed into a dedicated “expert” consisting of a single layer
of processing units, and the outputs of the different experts
are then combined in a separate output layer. As we will
show, this reduces the number of network connections and
the time required for error backpropagation training while
providing classification performance comparable to that of a
standard fully connected feedforward ANN. The input data
sources need not be selected to correspond with distinct data
types (e.g. images, speech, video) that might be present in a
multimedia context. The main requirement on the partition
of the set of input attributes into sources is that only “loose”
interaction be needed across sources in order to predict the
target attribute.

Related work

Jacobs et al. [6] proposed a technique known as hierarchical
miztures of ezperts (HME). In HME as presented in [6], the
experts are feedforward ANN. Each expert operates on the
full set of input attributes. Separate gating networks, also
feedforward ANN that receive all of the attributes as inputs,
are used to implement a “soft partition” of the input space
into regions corresponding to experts; the outputs of a layer
of experts are weighted as dictated by the gating networks
and the combined output is fed into the next layer. [6] eval-
uated HME for a vowel recognition task, with good results.
An HME approach based on [6] has been applied to text cat-
egorization [9]. In contrast with HME, in the approach of
the present paper it is the set of data attributes that is parti-
tioned, not the input space that has the set of all attributes
as coordinates. In our approach no two experts share any in-
put attributes. This results in a significant reduction in the
total number of network connections that emanate from the
input layer. This reduction has a beneficial effect on training
time but may lead to a loss of representational power if the
target task requires strong interactions among attributes in
different cells of the input partition.

An interesting application using an approach related to that
presented in this paper is considered in [8]; their approach
involves feeding the outputs of several ANN as inputs to

another ANN. Each expert in [8] is trained to recognize a
specific value of the target (class) attribute, while in the
present paper we associate experts with partitions of the
set of input attributes. Moreover, [8] is concerned mainly
with the classification performance of various approaches in
the target domain of emotion recognition in speech and, in
terms of the architecture described, focuses on classification
accuracy. In contrast, we will in the present paper explicitly
address also issues of efficiency and representational limita-
tions associated with the system architecture.

Outline of the paper

Our paper begins with a description of ANN in general and
the mixture of attribute experts topology in particular. We
discuss representational and complexity issues for this topol-
ogy and contrast it with the standard fully connected feed-
forward topology. We provide proof of concept for our ANN
approach in the context of mining over multiple data sources
by applying a mixture of attribute experts ANN to the prob-
lem of detecting advertisments in images embedded in web
documents, using the Internet Advertisements dataset from
the UCI Machine Learning Repository [4]. We conclude with
a discussion of our results and suggestions for future work.

2. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANN) are models of distributed
computing by a network of very simple processing units. The
concept of an ANN is inspired by the view of the brain as a
system of interconnected neurons. Formally, a typical feed-
forward ANN can be defined by a weighted directed acyclic
graph (G, E,w). The nodes of G are the processing units.
The state of each processing unit ¢ is described by its activa-
tion value, usually assumed to be a real-valued function of
time. The weights w; ; attached to the edges E(j,4) (from
unit j to unit ¢) measure the relative importance of the ac-
tivations of various units j in determining the activation of
unit ¢. We will assume a memoryless model in which the
activation y; of node 7 at a given time is an instantaneous
function of the activation values y; at the same time of all
nodes j for which the weight w;, ; is nonzero. Specifically,
we assume the activation y; to be the result of applying a
nonlinear activation function f to a linear combination of
the activations ;:

yi=f (Zwi,jyj) (1)

The activation function f is assumed to be a logistic, or
sigmoid function:

f@) = 1

where o is a “steepness” parameter.

2.1 Network training

Multilayer neural networks may be trained by the method of
error backpropagation (see e.g. [10]). This supervised learn-
ing algorithm requires that a set of training pairs (It, O) be
presented to the network, where Ij is an input vector and
Oy, is the desired output vector corresponding to Iy. The
network weights are iteratively adjusted during training so
as to reduce the output error, that is, the mean square dif-
ference between the desired outputs O and the actual out-

(2)

puts O produced by the system on input Ix. The manner
in which error backpropagation adjusts the network weights
corresponds to a gradient search in weight space.

Error backpropagation pseudocode

For each training instance pair (Ix, Oy) consisting of inputs
I, and target outputs Og:

1. Pseudo—randomly initialize the network weights.

2. Repeat until the termination condition is satisfied {

(a) Propagate the inputs forward to the outputs by
repeatedly applying Eq. 1.

(b) Compute d values for all output nodes and hidden
nodes, as follows. For each output node k£ and
each hidden node h:

e = Ok - Ok
(Sk = Ok(l —_ Ok)ek
Sh=yn(l—yn) D wkend

outputs k

3)

Here, y, is the activation level of node h, and
W p, 18 the current value of the connection weight
from node A to node k. ?

(c) Update the weights for all pairs of nodes using
the § values as follows:

new wj«; = old wj—; + nd;y;, (4)

where 7 is a so—called learning rate.

}

Various termination criteria may be used. For example,
training can be terminated when the error over some re-
served validation set of instances has not decreased for a
certain number of iterations. If the initial weights happen
to be chosen sufficiently close to a particular local minimum
of the output error, and if the learning rate 7 is sufficiently
small, then error backpropagation is guaranteed to produce
a sequence of weights that converges to this local minimum.
Non-global optimality may be addressed by comparing the
results of error backpropagation for different pseudorandom
choices of the initial weights. For example, a variant of er-
ror backpropagation that incorporates an automatic random
restarting mechanism may be considered [1].

2.2 Network architectures

‘We consider feedforward ANN with two layers of processing
units. The inputs feed directly into the units of the first,
or “hidden” layer. The hidden units feed into the units of
the second, or “output” layer. The standard network topol-
ogy in this context is the “fully connected” (FC) network,
in which all pairs of (input, hidden) units are connected,
as are all (hidden, output) pairs. See Fig. 1. We consider
also a second network topology which we call a mizture of
attribute experts (MAE). In this topology, the set of inputs

!The name of the error back-propagation algorithm is de-
rived from the recursive form of the § equations: the errors
er at the output layer are “propagated back” through pre-
vious layers by Eq. 3.

Figure 1: Fully-connected network.

Input

and the units of the hidden layer are partitioned into & dis-
joint groups. The groups in the hidden layer are called ez-
perts. Bach of the experts will process data from a different
source. Each expert is fully connected to its correspond-
ing set of inputs, but is disconnected from the remaining
inputs. The hidden layer is fully connected to the output
layer. Fig. 2 shows a mixture of attribute experts network
with two experts. As discussed in the Introduction, our
mixture of attribute experts architecture differs from the hi-
erarchical mixture of experts architecture described in [6];
in the latter, all inputs are fed into each expert, and sepa-
rate gating networks are used to effect the mixture of the
experts’ outputs.

3. EFFICIENCY AND EXPRESSIVENESS

There is a difference in the intrinsic complexities of the learn-
ing tasks for FC and MAE which may be understood in
terms of the spaces in which learning takes place. For ei-
ther architecture, the target of learning is a function from
the n—dimensional Euclidean space R™ to the y—dimensional
Euclidean space RY, where n is the number of inputs and y
is the number of outputs. However, each of the two archi-
tectures explores a different portion of this function space
as we point out below.

Consider a MAE architecture with k£ experts, in which the
i—th expert has n; inputs and h; hidden nodes, and a FC ar-
chitecture with the same total number of inputs n = Ele n;
and the same total number of hidden nodes h = Zle hi.
FC targets a general function from R™ to RY expressed as a
composition

flg(zr, -+ 20))

of a function g : R® — R" and a function f : R" — RY.
On the other hand, because of the grouping of inputs and
hidden nodes into k mutually noninteracting experts, MAE
effectively adopts a factorization approach that targets a

Figure 2: Mixture of experts network.

Input

function of the more restricted form
f(m(w&l)---xgl)),--- ,gk(g:gh)---.’l,‘g;)) (5)

Here, each g; is a function g; : R™ — R where h; is the
number of hidden nodes in expert 7. Notice that the space of
the “outer” functions f is the same in both approaches, since
the total number of hidden nodes h and the total number
of outputs y is the same in both cases. However, while FC
searches for a single g in the nh—dimensional space of all
functions from R™ to R*, MAE instead performs k searches
for g1 through g, with the i—th search taking place in the
n;h;—dimensional space of functions from R™ to R . Since
the former (FC) space has higher dimensionality, the FC
architecture, and indeed any method that will potentially
consider the full function space, has a more complex task to
consider than does MAE or any other factorization method.
One consequence of this is that MAE trains more quickly
than FC. Another consequence, however, is a reduction in
the expressive power of MAE. We discuss these issues below.

3.1 Time complexity of training

The total training time in the error back—propagation al-
gorithm (see section 2.1) is proportional to the number of
weight updates; the number of weight updates in turn equals
the product of the number of network connections and the
number of training iterations required for convergence.

It is straightforward to calculate the number of network con-
nections in each of the two architectures. The number of in-
puts is generally much larger than the number of hidden and
output nodes of the network, so connections between the in-
put and hidden layers dominate the overall count. Since in
the FC architecture there is one weight for each pair con-
sisting of an input attribute and a hidden node, the total
number of weights between the input and hidden layers in
the FC architecture is the product nh of the number of in-
put attributes n and the number of hidden nodes h. For
the MAE architecture with k experts of roughly equal sizes,

each input is connected to about h/k hidden nodes, so the
number of weights from the input layer to the hidden layer is
roughly nh/k. Therefore, the MAE architecture can reduce
the number of network connections by a factor roughly equal
to the number of experts.

It is more difficult to provide precise a priori estimates of
the number of iterations. This is because of the complex
nature of the error surface, that is, the surface described by
the function that maps a vector of connection weight val-
ues to the mean square error attained by the corresponding
network with respect to a given set of training data. In-
deed, the very space of weights over which the error surface
is defined is different for FC and MAE. Some of our exper-
iments have shown a distribution of training times for the
mixture of attribute experts architecture that has a heavier
tail than that of the fully connected architecture. This has
led us to propose a random restarting technique in [1] that
brings the average number of training iterations closer for
the two architectures, thereby allowing the reduction in the
number of network connections associated with the mixture
of attribute experts architecture to be reflected in a similar
reduction in the overall time complexity of training.

3.2 Expressive power

Intuitively, the fact that there are groups of inputs that feed
into different experts makes it difficult for a MAE network to
model relationships across such input groups. We will show
that this is indeed true, by showing that there are functions
of m + n variables that cannot be expressed in MAE form
with two experts that have, respectively, m and n inputs.
We consider the specific case m = 2, n = 2, and assume that
the partition of the input attributes into experts is prede-
termined, with (z1,2) and (z,x5) as the two halves. We
focus on functions of the form ¢(z1z},z215), where ¢ is a
non-constant function and the arguments are products of
one variable from each of two “halves” of the input vector.
Specifically, take the example in which ¢ is the sum operator,
so that the target function is (z1, z2, T}, Th)> T1T) + T27h.
In order for the target function to equal the MAE composi-
tion f(g(x1,x2), g (x],xh)), the following must hold:

z1 = f(g(x1,2),9'(1,0)) = g(z1, z2) independent of z»
z2 = f(g(z1,22),4(0,1)) = g(x1,22) independent of z;
zy = f(g9(1,0), g’ (z1,25)) = ¢’ (x}, x5) independent of z)
zh = £(9(0,1), g’ (1, z5)) = ¢’ (x1, x5) independent of x}

which implies that ziz} + w2x5 must be constant, but of
course it's not. This contradiction shows that the target
function in question is not expressible by a MAE network.

Loosely interacting attributes

Because of the above phenomenon, the success of a MAE
approach in a particular context will depend on the possi-
bility of partitioning the set of input attributes in a way
that requires only “loose” interactions among attributes in
different groups of the partition. One domain in which such
a data partition may occur naturally is that of informa-
tion filtering or recommendation based on a combination of
social (collaborative) and content information; we have ob-
tained promising results in this domain using the approach
of the present paper [1]. The meaning of “loose” is some-
what loose here, but may be made more precise by noting
that the space of attainable target functions should be as

described by Eq. 5. Thus, if the terms in Eq. 5 are stan-
dard sigmoids operating on linear combinations as in Eq. 1
and Eq. 2, then we see that “loose” interactions will include
those that depend on linear combinations of input attributes
in different cells of the partition.

4, EXPERIMENTAL EVALUATION
4.1 Data

We used the Internet Advertisements dataset [7], available
through the UCI Machine Learning Repository [4]. The
3279 instances of this dataset represent images embedded
in web pages; roughly 14% of these images contain adver-
tisements and the rest do not. There are missing values in
approximately 28% of the instances. The proposed task is to
determine which instances contain advertisements based on
1557 other attributes related to image dimensions, phrases
in the URL of the document or the image, and text occurring
in or near the image’s anchor tag in the document.

4.1.1 Attributes

A description of the attributes for the Internet Advertise-
ments dataset appears below as presented in the dataset’s
summary page at the UCI Machine Learning Repository [4].
The first three attributes encode the image’s geometry; ara-
tio refers to the aspect ratio (ratio of width to height). The
binary local feature indicates whether the image URL points
to a server in the same Internet domain as the document
URL. The remaining features are based on phrases in vari-
ous parts of the document; the terms origurl, ancurl, alt re-
fer respectively to the document URL, anchor (image) URL,
and alt text in the anchor tag for the image. See [7].

1. height: continuous. — possibly missing
2. width: continuous. — possibly missing
3. aratio: continuous. — possibly missing
4. local: 0,1.

5. 457 features from url terms,

each of the form “url*terml-+term2...”;
for example: url*images+buttons: 0,1.

6. 495 features from origurl terms, in same form;
for example: origurl*labyrinth: 0,1.

7. 472 features from ancurl terms, in same form;
for example: ancurl*search+direct: 0,1.

8. 111 features from alt terms, in same form;
for example: alt*your: 0,1.

9. 19 features from caption terms, in same form,;
for example: caption*and: 0,1.

10. class attribute: ad/nonad

4.1.2 Input partition

Applying a mixture of attribute experts network to the above
data requires that the set of non—class attributes be split
into disjoint subsets to be used as inputs for the respective
experts. We will adopt the simplest possible approach to
this task here by using a natural grouping present in the
list above. The first four attributes in the enumeration will

constitute the first group. Each of the other items in the
enumeration except for the target attribute will be a group
also. Thus, we will have six experts in all, corresponding to
the following groups of input attributes:

1. Image geometry

2. Phrases in image’s URL
3. Phrases in base URL

4. Phrases in anchor URL
5. Phrases in alt text

6. Phrases in caption

4.1.3 Feature extraction

Although the Internet Advertisements dataset does not have
a particularly high occurrence of missing values, we chose to
reduce the dimensionality of the input attribute vectors us-
ing the singular value decomposition (SVD) in order to allow
training to be completed more quickly. We apply the SVD
to each expert’s group of input attributes separately so that
both the fully connected and the mixture of attribute ex-
perts architectures operate on the same input data. Only
groups 2-5 in the list above were processed using SVD. We
are able to halve the number of attributes by keeping only
the largest singular values after applying the SVD, discard-
ing those that contain a total of 1% or less of the “energy”.
That is, if the singular values are o1 > 02 > - - - on, then we
keep o1 -+ 0,, where n is the smallest integer such that

N 2
D jmnt105
N
Ej:l 0}2

The effect of SVD on the size of the input attribute groups
is summarized in Table 1.

Table 1: Attribute count before and after SVD.

< 0.01

Geom | URL | OrURL | AncURL | Alt | Capt

Before 4 457 495 472 111 19

After 4 265 196 279 107 19

4.2 Networks

4.2.1 Mixture of experts module

We used the implementation of error backpropagation for
feedforward neural networks provided in the Weka 3 sys-
tem [12]. We implemented the mixture of attribute experts
architecture as a new module, ExpertNetwork, which we
added to the Weka neural network module. The new mod-
ule was included in the weka.classifiers.neural directory to-
gether with the standard Weka modules and may be ac-
cessed through the Weka GUI. The new module allows one
to set the structure of the network by assigning only spe-
cific inputs to the hidden neurons. As an example, one can
assign the first 2000 inputs to one neuron and the following
3000 inputs to two other neurons by typing [2000,1][3000,2]
in the expertString field. 2 We also added the capability of

2The number of hidden neurons specified in the expertString
field must be lower than or equal to the number of hidden
neurons specified in hiddenLayers field.

tracking the precision and the accuracy of a network out-
put every certain number of iterations as specified by the
user. One can specify the file to write this information to in
the precAccFile field, and the number of iterations between
writings in the precAccPerlter field. 2 Finally, we added the
capability of writing the final network outputs for each test
instance to a file. The module uses the first input as an ID,
so that one can track whether there are any trends in the
network outputs. One trick for giving a reasonable ID to
the module is to embed the ID into the data as the first at-
tribute, and then assign 0 hidden neurons ([1,0]...) to the
first input so that it does not affect the network training.

4.2.2 Network configurations

We consider two basic architectures: a standard fully con-
nected feedforward network as depicted in Fig. 3, and a mix-
ture of attribute experts network as shown in Fig. 4.

Figure 3: Fully—connected network.

Geometry

Image URL

Base URL

Anchor URL

Alt Text

Caption

Geometry

Image URL

Base URL

IAnchor URL

Alt Text

Caption

In both cases, two output nodes are used, each correspond-
ing to one of the two possible values of the class attribute
(ad, nonad). We consider fully connected networks with 2,
3, and 6 hidden nodes, and mixture of attribute experts net-

30ne must note that specifying this field will affect the train-
ing time considerably, and that one should leave this field
as default to obtain a reliable training time.

works with either 1 or 2 nodes per expert. * The number of
experts is fixed at 6. Network inputs are obtained directly
as the output of SVD preprocessing of the data attributes
as explained in section 4.1.3 above.

4.3 Performance metrics

Several different metrics were used to evaluate the classifi-
cation performance and time efficiency of the various net-
works, including classification accuracy (fraction of labeled
test instances for which the system’s predicted classification
matches the class label), the F-measure, defined in terms
of the information retrieval metrics of precision (specificity,
fraction of true positives among true and false positives)
and recall (coverage, fraction of true positives among true
positives and false negatives) by the formula:

__ 2 x precision * recall
precision + recall

and the total training time needed for convergence of the
error backpropagation algorithm.

4.4 Evaluation protocol

We employed n-fold cross-validation throughout. The num-
ber of folds, n, was either 4 or 10 depending on the exper-
iment. For each experiment, we randomly partitioned the
data into n parts and proceeded to carry out n training and
testing trials. For each of these trials, one of the n parts of
the data set was reserved for testing and the union of the
other nine parts was randomly split into a 70% portion used
for training and a 30% portion used as a validation set to
determine when to stop training. The networks were trained
using the error backpropagation algorithm with a learning
rate of 0.3 and a momentum coefficient of 0.2. Training con-
tinued until 20 consecutive iterations resulted in no increase
in the precision as measured over the validation set, or un-
til a maximum of 2000 training iterations had been carried
out. After training was completed, performance measures
were evaluated based on the networks’ performance on the
reserved testing part of the data for that trial. The values
of the performance measures were then averaged over the n
trials; these averages are the values that we report here.

5. RESULTS

5.1 Classification performance

Table 2: Classification accuracy.
Architecture Mean | Median
Fully—connected (2 hidden nodes) | 0.94 0.96
Fully—connected (4 hidden nodes) | 0.96 0.96
Fully—connected (6 hidden nodes) | 0.94 0.96
Experts (1 node per expert) 0.96 0.96
Experts (2 nodes per expert) 0.96 0.96

Table 2 shows the classification accuracy obtained for the
different system architectures. The evaluation protocol used
in this experiment was four-fold cross-validation. As the
figure shows, the accuracy values appear very similar for all
architectures tested.

4The “two nodes per expert” MAE architecture has 10 hid-
den nodes: one for each of the image geometry and caption
terms experts, and two for each of the other four experts.

Nonetheless, the similarity in the accuracy values hides a
significant difference in the classification performance of the
different networks. This difference becomes apparent when
we examine the observed values of the F-measure in Table 3
(computed using four-fold cross-validation).

Table 3: F—measure.
Architecture Mean | Median

Fully—connected (2 hidden nodes) | 0.65 0.85
Fully—connected (4 hidden nodes) | 0.87 0.86
Fully—connected (6 hidden nodes) | 0.65 0.86
Experts (1 node per expert) 0.85 0.87
Experts (2 nodes per expert) 0.85 0.84

Although Table 3 shows little difference across architectures
in the median values, a significant drop is observed in the
mean value of the F-measure for the fully connected archi-
tecture with 2 or 6 hidden nodes. Here, this was associated
with convergence of the error backpropagation training algo-
rithm for these networks to non—global minima of the output
error landscape in some of the runs; the resulting classifiers
predict the same class (for example, nonad) for all test in-
stances. A random restarting version of error backpropaga-
tion [1] might reduce this phenomenon somewhat, but we
have not yet carried out such an experiment.

5.2 Time efficiency

The total time required to train each network over 75% of
the set of 3279 instances is reported in Table 4. This exper-
iment was performed in the Weka 3 system with our neural
experts module, using JVM version 1.4.1 on a Pentium-
based system with 2.0 GHz clock rate and 256 MB RAM.

Table 4: Training times (seconds).

Architecture Mean | Median
Fully—connected (2 hidden nodes) | 1532.5 | 925.3
Fully—connected (4 hidden nodes) | 2578.8 | 2167.6
Fully—connected (6 hidden nodes) | 4243.7 | 4631.3

Experts (1 node per expert) 1977.2 | 2324.7
Experts (2 nodes per expert) 890.4 830.5

Table 4 (four—fold cross—validation) shows that the mixture
of attribute experts architecture with two nodes per expert
trained faster than the fully connected architectures. Qual-
itatively, this phenomenon appears to be stable. However,
we note that the precise training times depend significantly
on the stopping criteria used for training.

5.3 Discussion

The results in Table 4 show that the fully connected ar-
chitecture with 4 and 6 hidden nodes took much longer to
train than either of the mixture of attribute experts architec-
tures, each of which has at least 6 hidden nodes. Thus, the
mixture of attribute experts architecture provides a more
efficient way of making use of the available computational
resources. As Tables 2 and 3 above show, this time ad-
vantage is achieved without sacrificing classification perfor-
mance. This supports the implicit assumption that the
chosen assignment of input attributes to experts yields a
“loosely interacting” partition as described in section 3.2.

The only version of the fully connected architecture that
trained in a time comparable to the slower of the two mix-
ture of attribute experts networks is that with 2 hidden
nodes. However, Table 3 shows that this particular fully

connected network displayed inferior classification perfor-
mance in the sense of the F-measure on some of the runs.
The fastest training was achieved by the mixture of attribute
experts architecture with 2 nodes per expert. Remarkably,
this architecture trained even faster than the mixture of at-
tribute experts architecture with only one node per expert.
This may point to differences in the output error landscape
that make it more difficult to find the minimum points in
weight space when the experts contain only one hidden node.
We carried out an additional cross-validation experiment,
increasing the number of folds from 4 to 10 in order to
better assess the statistical stability of the above results.
We increased the number of hidden nodes from 10 to 12 in
the larger of the MAE architectures and compared the re-
sults with those for a fully connected network with 3 hidden
nodes. Again, error backpropagation for the fully connected
architecture fails to converge on some runs. This is reflected
in a significantly lower mean F—value for the fully connected
architecture with 3 hidden nodes in Table 5, just as previ-
ously observed for the fully connected architecture with 2 or
6 nodes in Table 3. These results provide further support
for the finding that the mixture of attribute experts archi-
tecture has better classification performance in this context.

Table 5: F—measure (10-fold cross-validation).

Architecture Mean | Median
Fully—connected (3 hidden nodes) | 0.79 0.87
Experts (1 node per expert) 0.85 0.86
Experts (2 nodes per expert) 0.87 0.87

Table 6: Training times (sec.), 10-fold cross-valid.

Architecture Mean | Median
Fully—connected (3 hidden nodes) | 2760.8 | 2086.9
Experts (1 node per expert) 2676.8 | 2779.0
Experts (2 nodes per expert) 1568.8 | 1131.8

Table 6 shows an increase in the mixture of attribute ex-
perts training time relative to the results in Table 4, which
is consistent with the increased number of hidden nodes in
the larger of the MAE networks. Nonetheless, the computa-
tional superiority of the mixture of attribute experts archi-
tecture with two nodes per expert is still evident in Table 6.

6. CONCLUSIONS

We have shown that in situations involving multiple data
sources, a mixture of attribute experts neural network ar-
chitecture provides a natural way to reduce the number of
network connections and, accordingly, the time needed for
network training. We have applied this idea to a partic-
ular problem involving detecting advertisements in images
embedded in web pages. In this context, we were able to
reduce the training time while maintaining the same level
of classification performance as a fully connected network
operating on the same input data. Convergence of the er-
ror backpropagation algorithm to non—global local minima
of the error function was observed in the case of a fully
connected network architecture in some of our experiments.
Experimental evaluation of the effect of a random restarting
variant of error backpropagation [1] in this context would be
desirable, as would an assessment of how training times de-
pend on the stopping criteria for training. Based on our
results to date, we believe that our approach holds promise
as a technique for multimedia data mining. As we pointed

out, the success of this technique depends on the availabil-
ity of a set of input attributes that can be partitioned into
subsets with relatively little mutual interaction in determin-
ing the value of the target attribute. It will be beneficial to
identify domains in which such a situation may occur natu-
rally, as well as feature selection techniques that contribute
to this goal in other domains.

7. ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their helpful
comments.

8. REFERENCES

[1] S. Alvarez, C. Ruiz, T. Kawato, and W. Kogel. Faster
neural networks for combined collaborative and
content-based recommendation. Preprint, 2003.

[2] M.-L. Antonie, O. Zaiane, and A. Coman. Application
of data mining techniques for medical image
classification. In Proc. of Second Intl. Workshop on
Multimedia Data Mining (MDM/KDD’2001), pages
94-101, San Francisco, CA, August 2001.

[3] M. Berthold, F. Sudweeks, S. Newton, and R. Coyne.
Clustering on the net: Applying an autoassociative
neural network to computer mediated discussions. J.
Computer Mediated Communication, 2(4), 1997.

[4] C. Blake and
C. Merz. UCI repository of machine learning databases.
[http://www.ics.uci.edu/~mlearn/MLRepository.html],
1999. Dept. of Information and Computer Science,
University of California. Irvine, CA.

[5] L. Guan, T. Adali, S. Katagiri, J. Larsen, and
J. Principe. Guest editorial, special issue on intelligent
multimedia processing. IEEE Transactions on Neural
Networks, 13(4):789-792, July 2002.

[6] R. Jacobs, M. Jordan, S. Nowlan, and G. Hinton.
Adaptive mixtures of local experts. Neural
Computation, 3:79-87, 1991.

[7] N. Kushmerick. Learning to remove internet
advertisements. In Proc. of the Third Annual
Conference on Autonomous Agents (AGENTS99),
pages 175-181, Seattle, WA, USA, 1999. ACM.

[8] V. Petrushin. Emotion recognition agents in the real
world. In Socially Intelligent Agents: the Human in
the Loop, Papers from the 2000 AAAI Fall Symposium
(K. Dautenhahn, Chair). Technical Report FS-00-04,
AAAT Press, 2000.

[9] M. Ruiz and P. Srinivasan. Hierarchical text
categorization using neural networks. Information
Retrieval, 5(1):87-118, 2002.

[10] D. Rumelhart, G. Hinton, and R. Williams. Learning
internal representations by error propagation. In
D. Rumelhart and J. McClelland, editors, Parallel
Distributed Processing, Vol. 1, pages 318-362. MIT
Press, Cambridge, MA, 1986.

[11] S. Simoff, C. Djeraba, and O. Zaiane.
MDM/KDD2002: Multimedia data mining between
promises and problems. SIGKDD Ezplorations,
4(2):118-121, 2003.

[12] I. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann Publishers, 1999.

