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Machine learning 

• Is the study of computational mechanisms 
that adapt based on experience, improving 
their performance on a target task over time. 

 Mitchell, 1997 (paraphrased) 

 

• Is very useful in data analysis (data mining), to  

– uncover previously unknown patterns 

– build predictive models that generalize well 
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Bioinformatics applications of ML (Prompramote et al, 2005) 



Popularity of ML techniques 
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Jensen & Bateman (2011), Bioinformatics 27(24): 3331-3332 



Outline of talk 

• Basic concepts 
– Instances and features 

– Input and hypothesis spaces 

– Error and generalization 

– Model vs data complexity 

– Meta-learning 

• Preprocessing 
– Attribute selection 

– Feature extraction 

• Supervised learning: classification and regression 
– Decision trees 

– Neural networks: gradient descent, hidden representations 

– Instance-based learning 

– Bayesian techniques 

– Support Vector Machines,  kernels 
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BASIC CONCEPTS IN  
MACHINE LEARNING 
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Supervised machine learning  
(“with a teacher”) 
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• Experience for learning takes form of data set of labeled 
training examples (𝑥, 𝑦 )  

 𝑥 is input (stimulus) and 𝑦  is desired output 
 

  𝑥    𝑦  
 SL             SW          PL             PW 
 6.2000    2.2000    4.5000    1.5000  versicolor 
 6.5000    3.2000    5.1000    2.0000  virginica 
 4.8000    3.0000    1.4000    0.3000  setosa 

 6.7000    3.0000    5.2000    2.3000  virginica 
 6.7000    3.1000    4.4000    1.4000  versicolor 

 

• Goal is to learn function 𝑦 = 𝑓(𝑥) (predictive model) 
– Model includes representation of data in some formalism 

• Decision trees, Neural networks… 



Supervised machine learning tasks 

• Classification if 𝑦  comes in discrete categories 

– Will patient 𝑥 get sick (𝑦  = healthy or 𝑦  = sick)?  

– Is flower of type virginica, versicolor, or setosa? 

– Is nucleotide sequence 𝑥 coding or non-coding? 
 

• Regression if 𝑦  is a continuous target 

– Estimate snowfall 𝑦  based on geographic location 𝑥 

– Predict the expression level 𝑦  of 𝑥 
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Unsupervised machine learning  
(“class discovery”) 

• Experience consists only of unlabeled training 
data 𝑥 (evidence only, no ``answers’’) 

Goal is to uncover relationships among examples 

 

• Clustering aims to group examples by similarity 

– Group sequences 𝑥 by expression pattern 
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Data, instances, attributes 

• Each data example, 𝑥, is an instance 
 

• Instances 𝑥 described by attributes 𝑥1, 𝑥2, … , 𝑥𝑛 
– predictive attributes (evidence) 

• Such as micro-array expression levels 

• Or sepal and petal measurements 

– target attribute is separate (where applicable) 
• Such as type of leukemia 

• Or type of iris flower 
 

• Attribute quality is crucial to ML success 
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The input space 
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Classifier viewed as 
decision surface 

Examples viewed as 
points in space 



Simple error metrics 

• Classification 

𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
# 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 # 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 

 

• Regression 

𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 =
1

𝑛
 𝑦𝑘 − 𝑦 𝑘

2

𝑛

𝑘=1
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The hypothesis space 
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learning model 

Learner type determines hypothesis representation 
 (e.g., rules, decision diagrams, continuous functions) 

For given type, hypotheses share a basic structure 
 but differ in details (e.g., parameter values) 



Training a machine learner 

• Input: dataset 𝐷 = { 𝑥1, 𝑦1 ,… , 𝑥𝑛, 𝑦𝑛 } 

• Output: element M of hypothesis space, based on 𝐷, to 
be used as a predictive model 

• Procedure: depends on learning technique, but seeks 
deep valleys in model parameter landscape 
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error(p) 

parameters, p 



Testing a predictive model 𝑀 on 
labeled data 

• Input: predictive model 𝑀, test dataset 𝐷 of 
labeled instances (𝑥, 𝑦 𝑥 ) 

• Output: predicted labels 𝑦 = 𝑀 𝑥  for all 
instances 𝑥 in 𝐷, and associated error rate 

 

𝑒𝑀 𝐷 =
# 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑥 𝑖𝑛 𝐷 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑀 𝑥 ≠ 𝑦 (𝑥)

𝑡𝑜𝑡𝑎𝑙 # 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝐷
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Generalization 

• Training datasets are just samples 

 

• Desire least error across population (unseen) 

– Known as generalization error 
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Estimating the generalization error 

• Input: predictive model 𝑀, dataset 𝐷 of labeled 
instances (𝑥, 𝑦 𝑥 ) 

• Output: estimate of generalization error rate of 𝑀 

 

𝑔 𝑀 = lim
𝑛→∞

# 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑥 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑀 𝑥 ≠ 𝑦 𝑥  𝑖𝑛 𝑎 𝑠𝑖𝑧𝑒 𝑛 𝑠𝑎𝑚𝑝𝑙𝑒

𝑛
 

 

• Procedure: several approaches (next few slides) 
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Estimate 1: use the training error 

Use error rate on training dataset 𝐷 as estimate of 
generalization error 

 

• Pros 
– Easy! 
– Uses all available data (important if data are scarce, 

reduces random variation due to sample size) 
 

• Cons 
– Underestimates generalization error (serious problem) 
– High risk of overfitting unimportant details of sample 
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Estimate 2: training-test split 

Split 𝐷 randomly into disjoint portions 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑡𝑒𝑠𝑡 

Train on 𝐷𝑡𝑟𝑎𝑖𝑛 only 

Use error rate on 𝐷𝑡𝑒𝑠𝑡 as generalization estimate 
 

• Pros 
– Better generalization estimate (test on unseen data) 

 

• Cons 
– Reduces size of sample on which model is based, reducing 

quality of estimate 

– Results may depend sensitively on training / test split 
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Estimate 3: 𝑘-fold cross-validation 
(“leave-one-out” cross-validation if 𝑘 = 𝑛)  
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Split 𝐷 into 𝑘 disjoint portions (“folds”) 𝐷1, … , 𝐷𝑘 of roughly equal sizes 
For each 𝑖 in range 1…𝑘 

Train model 𝑀𝑖 on D ∖ 𝐷𝑖  
Let 𝑒𝑖 be the test error of 𝑀𝑖  on 𝐷𝑖 

Use mean 𝑒 =
1

𝑘
 𝑒𝑖 𝑖 as generalization error estimate 

 

• Pros 
– Better estimate of generalization error than train-test split (estimate 

averaged over 𝑘 random samples) 
– Uses most available data for model (if 𝑘 large) 

 

• Cons 
– More computationally demanding than simpler approaches 
– Class distribution may be uneven across folds – add stratification 

iopscience.iop.org 
iopscience.iop.org 



Components of the error 
error = bias + variance 

 

• Bias = error on infinite dataset, due to 
representational limitations of classifier 

 

• Variance = error due to random variation in 
finite data sample 
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P. Domingos. Comm. ACM, 55(10):78-87, 2012. 



Bias-variance tradeoff 
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Low bias, high variance 

Low variance, high bias 



Model complexity  
and bias-variance tradeoff 

• Complexity of predictive model may control a 
tradeoff between bias and variance 

– High model complexity: low bias, high variance 

– Low complexity: high bias, low variance 

– Best performance often occurs near “crossover” point 

• Good match between model and data complexity 
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Balancing model complexity and data complexity 
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Model complexity  
and generalization error 
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underfitting 

overfitting 



Minimum Description Length 

• Add model complexity to error metric to estimate 
generalization error 
– The “description length” is the number of bits needed 

to encode the dataset given a model: 

– DL = L(model) + L(data | model) 

– First term on right represents model complexity 

– Second term is model fit error (training error) 
 

• Minimum Description Length (MDL) Principle 
– Models with smallest DL should be preferred 
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The wisdom of crowds 

• A basic motivation for meta-learning 
– Majority vote among independent “weak predictors” 

(slightly better than random) can be quite accurate 

• Meta-learning pseudocode 
– Input: labeled dataset, D, model type, count 𝑛 
– Output: predictive model, M 
– Procedure: 

for each 𝑖 in range 1…𝑛 
train a model 𝑀𝑖 on 𝐷 

return model M that, on input 𝑥, predicts class  
argmax𝑖  (#𝑖 | 𝑀𝑖(𝑥) = 𝑐) 

(or the mean over all 𝑀𝑖(𝑥) in the case of regression) 
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Bagging (Bootstrap AGGregatING) 

• Uses repeated sampling with replacement to 
generate multiple models to be combined 

• Aims to reduce variance component of error by 
simulating a larger data sample 

 

for each 𝑖 in the range 1…𝑛 
 Generate a bootstrap sample 𝐷𝑖 of 𝐷 of the same 
 size as 𝐷 by sampling from 𝐷 with replacement 
 Train a model 𝑀𝑖 (“weak learner”) on 𝐷𝑖 

 

predict by plurality vote among the models 𝑀𝑖  
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Example 

• Labor dataset, trees vs bagged decision 
stumps 
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Boosting 
• Weights instances to focus model search on “harder” cases 

• Attempts to address bias component of error 

• Input: labeled dataset 𝐷, max iterations 𝑇, learners 𝐿1…𝐿𝑇 

• Output: a classification model 𝑀 based on 𝐷 

• Procedure: 

assign weight of 1 to each instance in 𝐷 

for 𝑡 = 1 to 𝑇 
sample 𝐷𝑡 from 𝐷 (w. replacement), likelihood proportional to weight 

train 𝑡-th learner 𝐿𝑡 on 𝐷𝑡, yielding model 𝑀𝑡; record error 𝑒𝑡 

if 𝑒𝑡 is 0 or more than 0.5, break 

for each instance 𝐼 in 𝐷 correctly classified by 𝑀𝑡: 

multiply weight(𝐼) by 𝑒/(1 − 𝑒) (less likely to be picked)  
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Boosting: classification procedure 

Given a test instance 𝑥: 
 

 for each class 
  initialize weight(class) to 0 

 
 for 𝑡 over valid model indices (some may have been skipped) 

  let 𝑐 = class predicted by 𝑀𝑡 on input 𝑥 

  add −log (
𝑒𝑡

1−𝑒𝑡
) to weight(𝑐)  

  (greater amount the more accurate the model) 
 

 return 𝑎𝑟𝑔𝑚𝑎𝑥𝑐 weight(𝑐) 
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Example 

• AdaBoost on labor dataset 
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DATA PRE-PROCESSING 
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Easy pre-processing steps that can help 

• Identify and eliminate clear outliers 

• Address data instances with missing values 

– Due to measurement error  

– Possibly replace with modal or mean values 

• Make attributes comparable 

– Height in m, age in years are on different scales 

– Normalize to range [0,1], or standardize 𝑍 =
𝑋−𝜇

𝜎 
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Discretization 

• Some predictive techniques cannot handle 
continuous values 

• Discretization converts continuous attributes 
to discrete attributes by binning 
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Unsupervised discretization 

• Equal width bins, or equal frequency 

• How many bins? 

Bias-variance calculation provides rough estimate 

bias = 𝑂
1

𝑏
,   variance = 𝑂(

1

𝑁/𝑏
) 

total =
1

𝑏2
+
𝑏

𝑁
 (bias squared to make comparable) 

minimum when  
𝑑 total

𝑑𝑏
= 0  ⇒   𝑏 = (2𝑁)

1

3 
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Supervised discretization 

• Supervised approach 

– Class entropy-based discretization maximizes a 
measure of class homogeneity 

– MDL stopping prevents uncontrolled splitting by 
penalizing discretization model complexity 
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Measures of class inhomogeneity:  
class entropy 

• Shannon entropy of probability distribution  
  𝐻 = − 𝑝𝑘log 𝑝𝑘𝑘  
– H is bits per symbol for optimal lossless code (Shannon, 

Bell System Technical Journal (27), 1948) 

– Use distribution of class labels as 𝑝 

– Bins with “greater class purity” have lower class enropy 

 

 

 

 
𝐻 = 1.49 bits / symbol 

 
6 July 2014 

Alvarez: Introduction to Machine Learning 
RNA Summer School, Boston College 

39 



Simple ML models can work very well 

• 1-R classifier (Holte, 1993) 
– Given a labeled training dataset, 𝐷, the 1-R model 𝑀 

determines most discriminating attribute, 𝑎∗ 

– Predicted label 𝑀(𝑥) for any instance 𝑥 is the most 
common class among instances in D for which 𝑎∗ has 
the same value as 𝑎∗(𝑥) 

 

• Holte showed that performance of 1-R rivals that 
of more complex techniques for many problems 

 

• Moral of story: quality of data attributes is crucial 
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Problems of high dimensionality 
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• If dimension of input space (𝑥1, 𝑥2, … , 𝑥𝑛) is high 
– Calculations are slower (e.g., 𝑂(𝑛3) algorithm takes 15000 

times as long in 100 dimensions than in 4) 
– Random noise can drown out signal in some techniques 

(total noise is O( 𝑛) if 𝑛 attributes affected independently) 
• problematic for instance-based approaches in particular 

– Sampling input space broadly becomes difficult (most 
points located near outer walls in high dimensions) 

 

• Moral of story: small set of high-quality attributes may 
be better than just throwing in every measurement 



Attribute selection 

• Finds a subset of attributes that is well suited to 
the predictive task at hand 

 

• Reduces data dimensionality 

 

• Can improve predictive performance 
– Example: ALL-AML leukemia data (Golub et al, 1999) 

 7129 DNA micro-array attributes 
• Nearest neighbor classifier, full attribute set, 0.11 error rate 

• Same classifier, 36 attribute subset, 0.05 error rate 
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Attribute selection approaches 

• Domain expertise 
– Priceless, use if available 

• Ranking-based (e.g., InfoGain, ReliefF) 
– Grade individual attributes based on class 

discrimination power 

• Subset evaluation (e.g., CFS) 
– Consider sets of attributes collectively 

– Use intrinsic metrics, or wrapper approach (actual 
classification performance of selected attributes) 
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Feature extraction 

• Involves  creation of new attributes from old 

– For example, extract BMI from weight and height 

• Can lead to more informative data description 

• Can improve predictive performance 

• Can reduce dimensionality 
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Can these classes be separated by a 
linear boundary? 
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Let  𝑧 = 𝑥2 + 𝑦2 



Principal Components Analysis (PCA) 
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Eigenvectors of data covariance matrix 
form orthogonal (de-correlated) frame  

Eigenvalues are variances along 
principal axes, allowing ranking 
and dimensionality reduction 



Example: digits 
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Discrete Fourier Transform (DFT) 

• Converts data sequences (e.g., varying in time) 
to frequency content (spectral) representation 

– Very useful for signal processing applications 
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Sleep EEG signal as a function of time Corresponding frequency content 



DECISION TREES 
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Sample decision tree 
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𝑥1 < 0 

𝑥2 < 2 
𝑥1 < 2 

𝑥2 < 1 A B B 

A B 

true 

true 

true true 

false 

false 

false 
false 



Decision tree decision boundaries 
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𝑥1 < 0 

𝑥2 < 2 𝑥1 < 2 

𝑥2 < 1 A B B 

A B 

true 

true 

true true 

false 

false 

false 
false 



Basic decision tree learning algorithm 
(“iterative dichotomization” (ID), Quinlan) 

• Input: labeled training dataset, 𝐷 

• Output: decision tree classifier 

• Procedure 
if 𝐷 contains single class 𝑐, or stopping condition met 

 return a single decision node that predicts class 𝑐 

𝑎 = attribute that splits 𝐷 most class-homogeneously 

𝐷1, 𝐷2, … , 𝐷𝑘  = resulting partition of 𝐷 according to 𝑎 

𝑇1, 𝑇2, … , 𝑇𝑘 = decision trees corresponding to 𝐷𝑖  (recursion) 

𝑟(𝑎) = internal node that tests attribute 𝑎 

return decision tree with root 𝑟(𝑎) and children 𝑇1, 𝑇2, … , 𝑇𝑘 
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Measures of class inhomogeneity:  
class entropy 

• Shannon entropy of probability distribution  
  𝐻 = − 𝑝𝑘log 𝑝𝑘𝑘  
– H is bits per symbol for optimal lossless code 

(Shannon, Bell System Technical Journal (27), 1948) 

– Use distribution of class labels as 𝑝 

 

 

 

 
𝐻 = 1.49 bits / symbol 
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Class entropy-based splitting  
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T. Mitchell 



When to stop splitting? 

• Decision tree learning is prone to overfitting 

– Early stopping helps (e.g., monitor DL) 

 

• Overfitting can be reduced by pruning 

– use statistical error bounds or MDL principle 
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Tree pruning 

• Can be based on binomial upper bound for 
generalization error in terms of training error, 𝑒 

𝑒 +
𝑧2

2𝑛
+  𝑧

𝑒 1 − 𝑒
𝑛

 +
𝑧2

4𝑛2

1 +
𝑧2

𝑛

 

where 𝑧 is Gauss critical value for desired confidence  
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Decision tree for Fisher Iris dataset  
in Weka 
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Random forests 

• Bagging with trees as individual models, using 
a random subset of attributes for each tree 

– Randomization of features aims to reduce 
correlation among individual models in ensemble 
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Description length for decision trees 

• Assume 𝑐 classes, 𝑎 attributes, 𝑛 nodes 

• Description length of model only 

– To code a decision node (leaf) 

• Just specify what class, need log 𝑐 bits 

– To code an attribute test node (internal) 

• Specify attribute in log 𝑎 bits, location in log 𝑛 bits 

• Description length of training data given model 

– To code a training error 

• Specify instance in log 𝐼 bits, class in log 𝑐 bits 

 
6 July 2014 

Alvarez: Introduction to Machine Learning 
RNA Summer School, Boston College 

59 



Decision tree size and performance 
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MORE ABOUT EVALUATION OF 
SUPERVISED MACHINE LEARNING 
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Basic evaluation metrics 

• Classification 

𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
# 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 # 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
# 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 # 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
= 1 − 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 

 

• Regression 

𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 =
1

𝑛
 𝑦𝑘 − 𝑦 𝑘

2

𝑛

𝑘=1
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Confusion matrices 

• Provide a breakdown of errors by class label 
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A B ← Classified as 

25 8 Actual A 

3 20 Actual B 



Error rate / accuracy 
can be misleading 

• Is a classification error rate of 1% good? 

– Correctly predicting gender 99% of the time in a 
general population is excellent 

– Correctly predicting one of the blood type labels 
{AB-, other} 99% of the time is less impressive 
(prevalence of blood type AB- is 0.6% in the US) 

6 July 2014 
Alvarez: Introduction to Machine Learning 

RNA Summer School, Boston College 
64 



Alternative error metrics (two-class case) 

• False positive and negative rates (lower is better) 
fpr = 𝑃 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 +  𝑎𝑐𝑡𝑢𝑎𝑙 −) 
fnr = 𝑃 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 −  𝑎𝑐𝑡𝑢𝑎𝑙 +) 

 

• Information retrieval metrics (higher is better) 
 Precision = 𝑃 𝑎𝑐𝑡𝑢𝑎𝑙 +  𝑝𝑟𝑒𝑑𝑖𝑐𝑡 +) 

 Recall = 𝑃 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 +  𝑎𝑐𝑡𝑢𝑎𝑙 +) 

 𝐹 =
2 Precision Recall

Precision + Recall
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ROC (Receiver Operating Characteristic) 
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ideal 

better than chance 

worse than chance 



ROC (Receiver Operating Characteristic) 
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AUC 



ROC operating point optimization 

• Two types of errors 
𝑓𝑝𝑟 = 𝑃 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 +  𝑎𝑐𝑡𝑢𝑎𝑙 −) 
𝑓𝑛𝑟 = 𝑃 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 −  𝑎𝑐𝑡𝑢𝑎𝑙 +) 

• Contribute differently to overall error rate 
 𝑃 𝑒𝑟𝑟𝑜𝑟 = 𝑃 + 𝑓𝑛𝑟 +  𝑃 − 𝑓𝑝𝑟 

• Write in terms of ROC axis variables 
𝑃 𝑒𝑟𝑟𝑜𝑟 = 𝑃 + (1 − 𝑡𝑝𝑟) +  𝑃 − 𝑓𝑝𝑟 

 error is constant along lines of slope 𝑃(−)/𝑃(+) 

 

6 July 2014 
Alvarez: Introduction to Machine Learning 

RNA Summer School, Boston College 
68 



ROC operating point optimization 
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ARTIFICIAL NEURAL NETWORKS 
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Perceptrons 

6 July 2014 
Alvarez: Introduction to Machine Learning 

RNA Summer School, Boston College 
71 

image: wikimedia.org 

Output activated (out = +1) if net stimulus exceeds threshold 

out = sgn( 𝑤’𝑥 + 𝑤0 ) 



Learning is about the weights 

• “Synaptic plasticity” 
 

• Input-output behavior of the perceptron is 
completely determined by the weight vector 𝑤 
(with threshold) 

 

• How to pick the weight values?  
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Error landscape 
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weights, w 

E(w) 



Gradient descent learning 
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weights, w 

E(w) 

Δ𝑤 = −𝜂
𝜕𝐸

𝜕𝑤
 

Follow steepest downhill direction Converges to local minimum if learning rate small Gradient points uphill 



Perceptron learning algorithm  
(gradient descent) 

𝑒𝑟𝑟𝑜𝑟 =
1

2𝑛
 𝑦𝑘 − 𝑦 𝑘

2, 𝑤ℎ𝑒𝑟𝑒

𝑛

𝑘=1

 𝑦𝑘 =  𝑤𝑗

𝑚

𝑗=1

 𝑥𝑘,𝑗   

𝜕𝑒𝑟𝑟𝑜𝑟

𝜕𝑤𝑗
=
1

𝑛
 𝑦𝑘 − 𝑦 𝑘

 

𝑛

𝑘=1

 𝑥𝑘,𝑗  

“stochastic” weight updates:  

Δ𝑤𝑗 = 𝜂 𝑦 𝑘 𝑥𝑘,𝑗   if  𝑦𝑘 ≠ 𝑦 𝑘 

converges if zero-error solution exists (Rosenblatt, 1950s) 
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Limitations of single perceptrons 

• Decision surface is linear in input space 
 

𝑦 = 0  if and only if  w
′x + w0 = 0 

 

• But data may not be linearly separable at all 
(e.g., a positive island in a sea of negatives) 

– Perceptrons are representationally challenged 
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Multilayer neural networks 
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Image: matlabgeeks.com 

“sigmoid” activation function 



Universal approximation property 

• (Cybenko, 1989) Artificial neural networks 
with a single hidden layer of sigmoid units can 
uniformly approximate any continuous input-
output function arbitrarily closely. 

 

• In particular, classes that can be separated by 
a continuous boundary can be separated with 
arbitrarily small error by an ANN classifier. 
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Nonlinear ANN decision boundary 
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Diagram: T. Mitchell 



Training ANN: the error back-
propagation (EBP) algorithm 

• Gradient descent in error landscape (as for 
perceptrons), rewritten in a recursive form 
– Repeat until convergence or stopping condition met 

• For each training instance 𝑥1, 𝑥2, … 𝑥𝑛, 𝑦  
Present 𝑥𝑖  to network inputs, propagate through network,  yielding 
hidden activations ℎ𝑗 and outputs 𝑦𝑘  

Compute error at each output unit: 𝛿𝑘 = 𝑦𝑘(1 − 𝑦𝑘)(𝑦 𝑘 − 𝑦𝑘) 

Propagate errors back through network, computing 𝛿 at each unit 

𝛿ℎ = 𝑦ℎ(1 − 𝑦ℎ) 𝛿𝑘𝑤𝑘,ℎ𝑘  
(𝑤𝑘,ℎ is weight from hidden ℎ to output 𝑘) 

𝛿𝑖 = 𝑦𝑖(1 − 𝑦𝑖) 𝛿ℎ𝑤ℎ,𝑖ℎ  
(𝑤ℎ,𝑖  is weight from input 𝑖 to hidden ℎ) 

Update network weights: 

𝑤𝑎,𝑏 = 𝑤𝑎,𝑏 + 𝜂𝑦𝑏𝛿𝑎 (𝑤𝑎,𝑏 is weight from unit 𝑏 to unit a) 
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Avoiding overfitting in ANN 

• Universal approximation property is appealing  

– but is a double-edged sword 

– easy to overfit training dataset 
 

• Validation set approach 

– Given labeled training dataset, 𝐷 

Split D into disjoint portions 𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 , 𝐷𝑡𝑒𝑠𝑡  

Train network iteratively on 𝐷𝑡𝑟𝑎𝑖𝑛, test periodically on 𝐷𝑡𝑟𝑎𝑖𝑛 

Stop when validation error increases consistently 
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Alternatives to error back-propagation 

• EBP can be very slow to converge 

– Gradient vanishes at local minima of error 

 

• Many variations 

– Adaptive learning rate 

– Conjugate gradient methods 

– … 
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ANN hidden layer representations 

• Hidden layers act as feature extractors 

– Hidden layer transforms input (𝑥1, 𝑥2, … , 𝑥𝑛) into 

new feature vector (𝑓1 𝑥1, … , 𝑥𝑛 , … , 𝑓𝑘(𝑥1, … , 𝑥𝑛)) 

 

• Subsequent layers operate on hidden features 
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ANN hidden layer representations 
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ANN hidden layer representations 
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Diagram: T. Mitchell 



Deep learning 

• Recent work revisits multi-layer networks as 
classifiers and as generative models 

– Training uses Markov chain Monte Carlo ideas 

– Hierarchical hidden representations develop 

– See work by G. Hinton and others 

digits generation 

• and the talk by Prof. Baldi on Wed morning 
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SUPPORT VECTOR MACHINES (SVM) 
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Making perceptrons more robust 
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• Many different linear separating boundaries 

– Which one to choose? 
 



SVM: optimization formulation 

• Seek weight vector 𝑤 that maximizes margin 
among 𝑤 that classify all examples correctly 

 max
𝑤
 
𝑏

| 𝑤 |
 subject to y𝑖 𝑤’𝑥 + 𝑏 ≥ 1  ∀𝑖 

 

• Solution is a linear combination of the data 
points 𝑥𝑖  at the margins (“support vectors”) 

𝑤∗ = 𝛼𝑖
𝑖

𝑦𝑖𝑥𝑖 
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SVM: dual formulation 
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A. Zisserman 



SVM: linearly non-separable case 
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Address non-separability by introducing slack variables  
and an associated regularization constant, 𝐶 

Support vectors now occupy a band  
that extends across the decision boundary 



SVM: linearly non-separable case 
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Recall solution by feature extraction 
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Let  𝑧 = 𝑥2 + 𝑦2 



Nonlinear SVM 

• Decision boundary in previous slide is linear in the 
features  𝑓1 = 𝑥

2 and 𝑓2 = 𝑦
2 

 

• It can therefore be found using a linear SVM in the 
extended feature space (𝑥, 𝑦, 𝑓1, 𝑓2) 

 

• Consider the mapping Φ: 𝑥, 𝑦 ↦ (𝑥, 𝑦, 𝑥2, 𝑦2)’ 
 

• SVM solution only depends on the dot products 
Φ 𝑥𝑖 ′Φ(𝑥𝑗) of the training examples (Gram matrix)   

– This can be shown using the dual optimization formulation 
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More general nonlinear boundaries 

• Any conic section (parabola, hyperbola, ellipse) is 
a level curve of a quadratic function in 2D 

– a linear combination of the features  1, 𝑥, 𝑦, 𝑥𝑦, 𝑥2, 𝑦2 
 

• An SVM in this 6D space will be able to find a 
quadratic decision boundary if one exists 

 

• Higher-order boundaries addressed analogously 

– Order n requires a feature space of dimension 𝑂(𝑛2) 
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Kernels 

• High-D feature space computations are inefficient 
 

• Shortcut possible using notion of kernel  
Similarity function 𝐾(𝑥, 𝑦) on the input space 𝑆 such that: 

 𝐾(𝑥, 𝑦) is symmetric:  𝐾 𝑥, 𝑦 = 𝐾 𝑦, 𝑥  ∀𝑥, 𝑦 

 𝐾(𝑥, 𝑦) is continuous 

 𝐾(𝑥, 𝑦) is positive semi-definite:  

   𝑐𝑖𝐾 𝑥𝑖 , 𝑥𝑗 𝑐𝑗𝑖,𝑗 ≥ 0  

 for all finite point sequences 𝑥1, 𝑥2, … , 𝑥𝑛 in 𝑆  

 and all real number sequences 𝑐1, 𝑐2, … , 𝑐𝑛. 
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Mercer’s theorem 

(Mercer, 1908) Let 𝐾(𝑥, 𝑦) be any continuous, 
symmetric, positive semi-definite kernel on the 
input space 𝑆. 

There exists a mapping 𝜙: 𝑆 → 𝐹, where 𝐹 is a 
(usually higher-dimensional) inner product space, 
so that 𝐾 𝑥, 𝑦 = < 𝜙(𝑥), 𝜙(𝑦) >𝐹 for all 𝑥, 𝑦 in 𝑆.  
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The “kernel trick” 

• Since the dual formulation of SVM only 
depends on the Gram matrix Φ 𝑥𝑖 ′Φ(𝑥𝑗), 
and since Φ 𝑥𝑖

′Φ 𝑥𝑗 = 𝐾(𝑥𝑖 , 𝑥𝑗), the kernel 
function suffices in order to solve for all 
nonlinear decision boundaries that are linear 
in the high-D feature space 𝐹. 

 

• You don’t even have to explicitly know the 
precise feature space or feature mapping 
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Popular kernel families 

• Polynomial 
𝐾 𝑥, 𝑦 = 1 + 𝑥 ⋅ 𝑦 𝑑 

 

• Gaussian (radial basis function) 

𝐾 𝑥, 𝑦 = 𝑒
−
𝑥−𝑦

2

2𝜎2  
 

• String (Lodhi et al., 2002) 
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Bias-variance tradeoff in SVM 
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INSTANCE-BASED MACHINE 
LEARNING 
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The data-driven viewpoint 

• Why have models at all? Let data tell the story 

• Instance-based learning algorithm (“lazy learning”) 
– Input: dataset 𝐷 = { 𝑥1, 𝑦 1 , … , 𝑥𝑛, 𝑦 𝑛 } 

– Output: predictive model 𝑀 based on 𝐷 

– Procedure: 
return 𝐷 

• Instance-based prediction algorithm 
– Input: unlabeled data instance, 𝑥 

– Output: predicted label for 𝑥 

– Procedure: 
return label of most similar instances to 𝑥 in 𝐷 

6 July 2014 
Alvarez: Introduction to Machine Learning 

RNA Summer School, Boston College 
103 



Nearest-neighbor prediction 

• Define similarity in terms of a distance metric 
𝑑(𝑥, 𝑦) on the space of data instances 

• For prediction on an instance, 𝑥 

– Find the 𝑘 nearest neighbors of 𝑥 in training set 𝐷 

– Classification: predict modal class among the 
𝑘 nearest neighbors 

– Regression: predict weighted mean of the target 
values of 𝑘 nearest neighbors 
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How many neighbors, 𝑘? 

• Example of bias-variance tradeoff 

• Small k: low bias in decision boundary 
representation, but high variance of class 

• Large k: high bias, low variance 
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How many neighbors, 𝑘? 
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• Simple analysis yields order of magnitude of optimal 𝑘 
 

• Optimal k where bias and variance effects “cross” 

Standard deviation of mean of k neighbors = 𝑂(
1

𝑘
) 

Bias = O(diameter of k random points) 

• k points occupy 
𝑘

𝑁
 of total volume, so distance in unit cube = 

𝑘

𝑁

1

𝑑
 

Bias = stdev iff 
1

𝑘
 = 

𝑘

𝑁

1

𝑑
 iff  𝑘 = 𝑁

1

1+
𝑑
2 

 

• For d=2, above predicts 
𝑘 = 𝑁 , so 𝑘 = 10 in case 𝑁 = 100 



Instance-based learning pros and cons 

• Pros 

– Training is not needed 

– Does not rely on any parametric assumptions 

 

• Cons 

– Requires a lot of memory 

– Prediction is computationally intensive due to 
similarity search 
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PROBABILISTIC MACHINE 
LEARNING 
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Randomness unpredictable (mostly) 
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Random event means occurrence unpredictable  
except for relative frequency However, randomness allows some structure “in the large” 



Probabilistic classification 

• Classes 𝑐1, 𝑐2, … , 𝑐𝑘 with “prior” probabilities 𝑃(𝑐𝑖) 

• Attributes 𝑥1, 𝑥2, … , 𝑥𝑚 with joint class-conditional 
distribution 𝑃(𝑥1, 𝑥2, … , 𝑥𝑚| 𝑐𝑖) 

 

• Given a data observation 𝑥1, 𝑥2, … , 𝑥𝑚,  

 what class should be predicted? 

6 July 2014 
Alvarez: Introduction to Machine Learning 

RNA Summer School, Boston College 
110 



Maximum likelihood classification 

• Predict class  argmaxi 𝑃 𝑥1, 𝑥2, … , 𝑥𝑚  𝑐𝑖) 
 

• Example 

– P(positive lab result | sick) = 0.9 

– P(positive lab result | healthy) = 0.2 

– Therefore, given a positive lab result as evidence,  

 predict that the patient is sick 
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Bayesian classification 

• Bayes’ rule accounts for prior and class-conditional probs 
– For hypotheses ℎ and evidence 𝑒 

𝑃 ℎ  𝑒) = 𝑃 ℎ 𝑃 𝑒  ℎ)/𝑃(𝑒) 
 

• Bayesian classifier 
– Predict class argmaxi 𝑃 𝑐𝑖   𝑥1, 𝑥2, … , 𝑥𝑚) 

 

• Example 
– P(sick = 0.01),  P(+ lab | sick) = 0.9,  P(+ lab | healthy) = 0.2 
– By Bayes’ rule,  
– P(sick | + lab) = 0.01 0.9 / D,  P(healthy | + lab) = 0.99 0.2 / D 
– Therefore, given a positive lab result as evidence,  
 predict that the patient is healthy (about 20 times as likely) 
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Naïve Bayes approach 

• Bayesian approach often impractical 
– Can’t estimate details of class-conditional distributions 

• 10 ternary attributes allow 59000 combinations 

• How to estimate these probabilities using 100 instances? 

• Assume class-conditional independence (CCI) 

𝑃 𝑥1, 𝑥2, … , 𝑥𝑚  𝑐𝑖) = 𝑃 𝑥𝑗 𝑐𝑖)

𝑗

 

  Predict class  argmaxi 𝑃(𝑐𝑖) 𝑃 𝑥𝑗 𝑐𝑖)𝑗  

– Estimation of individual attribute values  𝑃 𝑥𝑗 𝑐𝑖)𝑗  is feasible 
• 10 ternary attributes only require 10(3) = 30 probabilities 

• Naïve Bayes can work well even if CCI assumption fails 
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Naïve Bayes for text categorization 

• Bag of words representation of document, 𝑑 
– Define dictionary of allowed words, 𝑊 

– Bernoulli version 
• View 𝑑 as vector 𝑑:𝑊 → {0,1} of word occurrences 

– Multinomial version 
• View d as vector 𝑑:𝑊 → 𝑍+ ∪ {0} of word counts 

 

• Use naïve Bayes word independence assumption 

𝑃 𝑑  𝑐𝑙𝑎𝑠𝑠) =  𝑃 𝑑 𝑤   𝑐𝑙𝑎𝑠𝑠)

𝑤∈𝑊
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Naïve Bayes for text categorization 
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Wang et al, BMC Bioinformatics 8:269, 2007 



Bayesian networks 
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Graphical models of conditional dependence relationships 

Naïve Bayes 

Moler et al, Phys. Genomics (4), 2000  Russell and Norvig, Artificial Intelligence 

Each node conditionally independent of its nondescendants,  
given its parents 



Expectation-maximization  
(Dempster, Laird, Rubin 1977, but basic idea is earlier) 

• Iterative general approach to estimation of 
“hidden parameters” in probability models 

– Including Bayesian networks 
 

• Repeat to convergence or stopping condition 

– E step 

• Calculate expected value of generative log likelihood of data 
given current model parameters 

– M step 

• Adjust parameter values to maximize expected log likelihood 
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Inference in Bayesian networks 

• Exact inference is computationally complex 

 

• Approximate inference techniques 

– Markov chain Monte Carlo samples from 
equilibrium distribution of Markov chain 
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Unsupervised clustering using E-M 

• Model unlabeled data using mixture of known 
parametric distributions, say Gaussians 
– Hypothesize 𝑘 populations, each described by different 

parameter values (e.g., prior probability of that population, 
and its mean and covariance) 

 

• Use E-M to estimate parameters for given 𝑘 
 

• Compare different 𝑘 using DL ideas (combine 
generative log likelihood with model complexity) 
– Bayes Information Criterion (BIC) 
– Akaike Information Criterion (AIC) 
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Example 

• Mixture of Gaussians E-M clustering 
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Probabilistic sequence models 

• Model random effects over time or space 

– Speech 

– Sequence generation 
 

• Use Bayesian networks, plus time slices 

– The future is conditionally independent of the 
past, given the present 

 

• Typically include hidden variables 
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Hidden Markov models (HMM) 
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States 𝑋𝑡 at top not observable, only evidence 𝑒𝑡 at bottom 



HMM state estimation  
(forward algorithm) 

• Given evidence 𝑒1, 𝑒2, … , 𝑒𝑡 , 𝑒𝑡, how to estimate of 
actual final state 𝑋𝑡? 

• Seek conditional distribution 𝑃 𝑋𝑡  𝑒1…𝑡) 

Assume distribution 𝑃 𝑋𝑡−1  𝑒1…𝑡−1) known (at 𝑡 − 1) 

• By Bayes’ rule,  𝑃 𝑋𝑡  𝑒1…𝑡) = 𝑐 𝑃 𝑒1…𝑡  𝑋𝑡) 

= 𝑐 𝑃 𝑒𝑡  𝑋𝑡) 𝑃 𝑋𝑡  𝑋𝑡−1)  𝑃 𝑋𝑡−1  𝑒1…𝑡−1)   

which is a sum over the conditional distribution at 𝑡 − 1 
(solved by recursion) 
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Example 

• Berkeley PacMan 
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HMM most likely state sequence 
(Viterbi algorithm) 

• Dynamic programming approach 
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Learning HMM parameters 

• Use Expectation-Maximization 

– Known as Baum-Welch algorithm in HMM context 
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TO LEARN MORE 

6 July 2014 
Alvarez: Introduction to Machine Learning 

RNA Summer School, Boston College 
127 



Free machine learning software 
(APIs and interactive) 

• Python 
– scikit-learn 
– mlpy 
– pyML 

 

• Java 
– Weka 
– Apache Mahout 

 

• C / C++ 
– SHOGUN (includes some of SVM-Light) 
– mlpack 

 

• R 
– kernlab 
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Other machine learning resources 

 

• ML on Coursera 

– https://www.coursera.org/course/ml 

 

• ML course materials by Thorsten Joachims 

– http://svmlight.joachims.org/ 
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Introductory ML references 

• Tom Mitchell. Machine Learning, McGraw-Hill, 1997 

• Christopher M. Bishop. Pattern Recognition and 
Machine Learning, Springer, 2006 

• Richard Duda, Peter Hart and David Stork. Pattern 
Classification, 2nd ed., John Wiley & Sons, 2001 

• Ian H. Witten, Eibe Frank, Mark A. Hall. Data Mining: 
Practical Machine Learning Tools and Techniques, 3rd 
ed., Morgan Kaufmann, 2011 

• Stuart Russell and Peter Norvig. Artificial Intelligence: 
a Modern Approach, 3rd ed., Prentice Hall, 2009 
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THANK YOU 
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