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INTRODUCTION



Machine learning

* |s the study of computational mechanisms
that adapt based on experience, improving
their performance on a target task over time.

Mitchell, 1997 (paraphrased)

 |s very useful in data analysis (data mining), to

— uncover previously unknown patterns
— build predictive models that generalize well



Bioinformatics applications of ML (Prompramote et al, 2005)
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Popularity of ML techniques

2000 —

— Artificial neural networks
— Support vector machines
Markov models
— Decision trees
1 —— Random forests
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Fig. 1. The growth of supervised machine learning methods in PubMed.
Jensen & Bateman (2011), Bioinformatics 27(24): 3331-3332
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Outline of talk

* Basic concepts
— Instances and features
— Input and hypothesis spaces
— Error and generalization
— Model vs data complexity
— Meta-learning

* Preprocessing
— Attribute selection
— Feature extraction

e Supervised learning: classification and regression
— Decision trees
— Neural networks: gradient descent, hidden representations
— Instance-based learning
— Bayesian techniques
— Support Vector Machines, kernels



BASIC CONCEPTS IN
MACHINE LEARNING



Supervised machine learning
(“with a teacher”)

* Experience for learning takes form of data set of labeled
training examples (x, y)
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Supervised machine learning tasks

* Classification if ¥ comes in discrete categories
— Will patient x get sick (y = healthy or y =sick)?
— Is flower of type virginica, versicolor, or setosa?
— Is nucleotide sequence x coding or non-coding?

* Regression if y is a continuous target
— Estimate snowfall y based on geographic location x
— Predict the expression level y of x



Unsupervised machine learning
(“class discovery”)

e Experience consists only of unlabeled training
data x (evidence only, no "answers”

Goal is to uncover relationships among examples

* Clustering aims to group examples by similarity

— Group sequences x by expression pattern



Data, instances, attributes

 Each data example, x, is an instance

* Instances x described by attributes x1, x5, ..., X,

— predictive attributes (evidence)
* Such as micro-array expression levels
* Or sepal and petal measurements

— target attribute is separate (where applicable)
e Such as type of leukemia
e Or type of iris flower

e Attribute quality is crucial to ML success



The input space

Examples viewed as
points in space
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Simple error metrics

* Classification
# instances incorrectly classified

error rate = -
total # instances

* Regression

n
1
mean squared error = - z Wk — Ji)*
{k=1}



The hypothesis space

learning . model

Learner type determines hypothesis representation
(e.g., rules, decision diagrams, continuous functions)

For given type, hypotheses share a basic structure
but differ in details (e.g., parameter values)



Training a machine learner

Input: dataset D = {(x*,y1), ..., (x™,y")}

Output: element M of hypothesis space, based on D, to
be used as a predictive model

Procedure: depends on learning technique, but seeks
deep valleys in model parameter landscape

error(p)

‘parameters, p



Testing a predictive model M on
labeled data

* |[nput: predictive model M, test dataset D of
labeled instances (x, ¥(x))

* Output: predicted labels y = M(x) for all
instances x in D, and associated error rate

# of instances x in D for which M(x) # y(x)
total # instances in D

ey (D) =



Generalization

* Training datasets are just samples

* Desire least error across population (unseen)

— Known as generalization error



Estimating the generalization error

* |[nput: predictive model M, dataset D of labeled
instances (x, ¥(x))

* QOutput: estimate of generalization error rate of M

# of instances x for which M(x) # y(x) in a size n sample

g (M) = lim

n—oo n

* Procedure: several approaches (next few slides)



Estimate 1: use the training error

Use error rate on training dataset D as estimate of
generalization error

* Pros
— Easy!

— Uses all available data (important if data are scarce,
reduces random variation due to sample size)

* Cons
— Underestimates generalization error (serious problem)
— High risk of overfitting unimportant details of sample



Estimate 2: training-test split

Split D randomly into disjoint portions D4, and Dypgt
Train on D455, ONly
Use error rate on D;,.+ as generalization estimate

* Pros
— Better generalization estimate (test on unseen data)

e Cons

— Reduces size of sample on which model is based, reducing
qguality of estimate

— Results may depend sensitively on training / test split



Estimate 3: k-fold cross-validation

Data Set
(574)

(430) -

Testing
(144)

e

iopscience.iop.org
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Components of the error

error = bias + variance

Low High
Variance Variance _
* Bias =erro ~, - 2to
represente He C o sifier
* Variance = : j “« . riationin
finite data L [ @ L7

Figure 1: Bias and variance in dart-throwing.

P. Domingos. Comm. ACM, 55(10):78-87, 2012.



Bias-variance tradeoff

Low|bias, high variance
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Model complexity
and bias-variance tradeoff

 Complexity of predictive model may control a
tradeoff between bias and variance

— High model complexity: low bias, high variance
— Low complexity: high bias, low variance

— Best performance often occurs near “crossover” point
* Good match between model and data complexity



Balancing model complexity and data complexity
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Model complexity
and generalization error

underfitting generalization
error

/ overfitting

complexity




Minimum Description Length

 Add model complexity to error metric to estimate
generalization error

— The “description length” is the number of bits needed
to encode the dataset given a model:

— DL = L(model) + L(data | model)
— First term on right represents model complexity
— Second term is model fit error (training error)

 Minimum Description Length (MDL) Principle
— Models with smallest DL should be preferred



The wisdom of crowds
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Bagging (Bootstrap AGGregatING)

* Uses repeated sampling with replacement to
generate multiple models to be combined

* Aims to reduce variance component of error by
simulating a larger data sample

foreachiintherangel..n

Generate a bootstrap sample D; of D of the same
size as D by sampling from D with replacement

Train a model M; (“weak learner”) on D;

predict by plurality vote among the models M;



Example

e Labor dataset, trees vs bagged decision
stumps



Boosting

Weights instances to focus model search on “harder” cases
Attempts to address bias component of error

Input: labeled dataset D, max iterations T, learners L; ... Lt
Output: a classification model M based on D

Procedure:

assign weight of 1 to each instance in D

fort=1toT

sample D; from D (w. replacement), likelihood proportional to weight
train t-th learner L; on Dy, yielding model M;; record error e;
if e; is 0 or more than 0.5, break
for each instance I in D correctly classified by M,:
multiply weight(l) by e /(1 — e) (less likely to be picked)



Boosting: classification procedure

Given a test instance x:

for each class
initialize weight(class) to 0

for t over valid model indices (some may have been skipped)
let ¢ = class predicted by M; on input x

add —log(lete
-t

(greater amount the more accurate the model)

) to weight(c)

return argmax_. weight(c)



Example

e AdaBoost on labor dataset



DATA PRE-PROCESSING



Easy pre-processing steps that can help

* |dentify and eliminate clear outliers
* Address data instances with missing values

— Due to measurement error
— Possibly replace with modal or mean values

 Make attributes comparable

— Height in m, age in years are on different scales

. . X_
— Normalize to range [0,1], or standardize Z = Uu



Discretization

* Some predictive techniques cannot handle
continuous values

 Discretization converts continuous attributes
to discrete attributes by binning



Unsupervised discretization

* Equal width bins, or equal frequency
* How many bins?

Bias-variance calculation provides rough estimate

bias = O (%) , variance = 0(

1
N/b

1 . b .
total = e + " (bias squared to make comparable)

d total

1
minimum when =0 = b= (2N)s



Supervised discretization

* Supervised approach

— Class entropy-based discretization maximizes a
measure of class homogeneity

— MDL stopping prevents uncontrolled splitting by
penalizing discretization model complexity



Measures of class inhomogeneity:
class entropy

* Shannon entropy of probability distribution
H = — X prlog py

— H is bits per symbol for optimal lossless code (Shannon,
Bell System Technical Journal (27), 1948)

— Use distribution of class labels as p
— Bins with “greater class purity” have lower class enropy

]

10 10 g

L] T—
H = 1.49 bits / symbol



Simple ML models can work very well

* 1-R classifier (Holte, 1993)

— Given a labeled training dataset, D, the 1-R model M
determines most discriminating attribute, a”

— Predicted label M (x) for any instance x is the most
common class among instances in D for which a™ has
the same value as a*(x)

* Holte showed that performance of 1-R rivals that
of more complex techniques for many problems

 Moral of story: quality of data attributes is crucial
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Attribute selection

 Finds a subset of attributes that is well suited to
the predictive task at hand

* Reduces data dimensionality

* Can improve predictive performance
— Example: ALL-AML leukemia data (Golub et al, 1999)

7129 DNA micro-array attributes
* Nearest neighbor classifier, full attribute set, 0.11 error rate
» Same classifier, 36 attribute subset, 0.05 error rate



Attribute selection approaches

* Domain expertise
— Priceless, use if available

* Ranking-based (e.g., InfoGain, ReliefF)

— Grade individual attributes based on class
discrimination power

e Subset evaluation (e.g., CFS)
— Consider sets of attributes collectively

— Use intrinsic metrics, or wrapper approach (actual
classification performance of selected attributes)



Feature extraction

Involves creation of new attributes from old

— For example, extract BMI from weight and height
Can lead to more informative data description
Can improve predictive performance

Can reduce dimensionality



Can these classes be separated by a

linear boundary?
Let z = x? + y?
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Principal Components Analysis (PCA)

10

Eigenvectors of data cova
form orthogonal (de-corrg
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Example: digits

-’IL 4 4 1 1
Ll b h b Iy
6| 8 3 g g
246 246 5 #B AHoh
2 2 2 2 7|
: ; il | ; :
5 B B B
D) 0 0 0 0
246 2 46
of 2 2 2 2
4 4 4 4 3
£ 5 g B 5
B 8 g a a
EENa
2 2 af k
1 4 p
B B 5
a
9.4 6

Figure 2: Reconstructions using top 10 eigenvectors
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Discrete Fourier Transform (DFT)

150 . , , | | | | | | 4 X 10
2-
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Sleep EEG signal as a function of time Corresponding frequency content
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DECISION TREES



6 July 2014

Sample decision tree

x1 <0
true false
true 2 false true false
B
A B Xy <1
false
true
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Decision tree decision boundaries
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Basic decision tree learning algorithm
(“iterative dichotomization” (ID), Quinlan)

* |nput: labeled training dataset, D
e Qutput: decision tree classifier

* Procedure
if D contains single class ¢, or stopping condition met
return a single decision node that predicts class ¢
a = attribute that splits D most class-homogeneously
D4, D,, ..., D}, = resulting partition of D according to a
T;,T,, ..., T;, = decision trees corresponding to D; (recursion)
r(a) = internal node that tests attribute a
return decision tree with root r(a) and children T3, T, ..., T}



Measures of class inhomogeneity:
class entropy

* Shannon entropy of probability distribution
H = — Xk prlog pk

— H is bits per symbol for optimal lossless code
(Shannon, Bell System Technical Journal (27), 1948)

— Use distribution of class labels as p

1] g
- :
| |

= 1.49 bits / symbol



Class entropy-based splitting

S: [9+.5-] S: [9+.5-]
E=0.940 E=0.940
High Normal Weak Strong
[3+.4-] [6+.1-] [6+.2-] [3+.3-]
E=0.985 E=0.592 E=0.811 E=1.00
T. Mitchell
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When to stop splitting?

* Decision tree learning is prone to overfitting
— Early stopping helps (e.g., monitor DL)

* QOverfitting can be reduced by pruning

— use statistical error bounds or MDL principle



Tree pruning

* Can be based on binomial upper bound for
generalization error in terms of training error, e
72 \/e(l —e) . z2
e + % + Z n 4—712

ZZ
1+

where z is Gauss critical value for desired confidence



Decision tree for Fisher Iris dataset
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Random forests

* Bagging with trees as individual models, using
a random subset of attributes for each tree

— Randomization of features aims to reduce
correlation among individual models in ensemble



Description length for decision trees

e Assume c classes, a attributes, n nodes

e Description length of model only
— To code a decision node (leaf)

* Just specify what class, need log c bits

— To code an attribute test node (internal)

 Specify attribute in log a bits, location in log n bits

* Description length of training data given model

— To code a training error

* Specify instance in log I bits, class in log ¢ bits



Decision tree size and performance

0.6

—error rate

0.55¢ —description length
057
0.45¢
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Number of nodes



MORE ABOUT EVALUATION OF
SUPERVISED MACHINE LEARNING



Basic evaluation metrics

* Classification
# instances incorrectly classified

error rate = -
total # instances

# instances correctly classified

accuracy = - = 1 — error rate
total # instances

* Regression

n

1
mean square error = — (yk o }’;k)Z
n

{k=1}



Confusion matrices

Provide a breakdown of errors by class label

__ — Classified as
Actual A
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Error rate / accuracy
can be misleading

* |s a classification error rate of 1% good?

— Correctly predicting gender 99% of the time in a
general population is excellent

— Correctly predicting one of the blood type labels
{AB-, other} 99% of the time is less impressive
(prevalence of blood type AB- is 0.6% in the US)



Alternative error metrics (two-class case)

* False positive and negative rates (lower is better)
fpr = P(predict + | actual —)
fnr = P(predict — | actual +)

* |Information retrieval metrics (higher is better)

Precision = P(actual + | predict +)
Recall = P(predict + | actual +)

2 Precision Recall

Precision + Recall



ROC (Receiver Operating Characteristic)
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ROC (Receiver Operating Characteristic)
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ROC operating point optimization

* Two types of errors
fpr = P(predict + | actual —)
fnr = P(predict — | actual +)

* Contribute differently to overall error rate
P(error) = P(+)fnr + P(—)fpr
* Write in terms of ROC axis variables
P(error) = P(+)(1 —tpr) + P(—)fpr
error is constant along lines of slope P(—)/P(+)



ROC operating point optimization
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ARTIFICIAL NEURAL NETWORKS



Perceptrons

Output activated (out = +1) if net stimulus exceeds threshold

out=sgn(w'x + wy)

I out(t)

in(t) <
image: wikimedia.org
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Learning is about the weights
* “Synaptic plasticity”

* |[nput-output behavior of the perceptron is

completely determined by the weight vector w
(with threshold)

* How to pick the weight values?
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E(w)
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Gradient descent learning

E(w)
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Perceptron learning algorithm
(gradient descent)

n m
1
error = % z (}’k —yk)z,where Yk = Z Wi Xk, j
{k=1} {j=1}

derror 1 1 ~
- Z Yk — Vi) Xk, j
{k=1}

“stochastic” weight updates:

Aw; =1 Vi xij it Y # Y
converges if zero-error solution exists (Rosenblatt, 1950s)




Limitations of single perceptrons

* Decision surface is linear in input space

y = 0 ifand only if w'x+wg =0

* But data may not be linearly separable at all
(e.g., a positive island in a sea of negatives)

— Perceptrons are representationally challenged



Multilayer neural networks

“sigmoid” activation function

Image: matlabgeeks.com
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Universal approximation property

* (Cybenko, 1989) Artificial neural networks
with a single hidden layer of sigmoid units can
uniformly approximate any continuous input-
output function arbitrarily closely.

* |n particular, classes that can be separated by
a continuous boundary can be separated with
arbitrarily small error by an ANN classifier.



Nonlinear ANN decision boundary
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Training ANN: the error back-
propagation (EBP) algorithm

* Gradient descent in error landscape (as for
perceptrons), rewritten in a recursive form

— Repeat until convergence or stopping condition met

* For each training instance (x4, x5, ... X;,, )

Present x; to network inputs, propagate through network, yielding
hidden activations h; and outputs yj

Compute error at each output unit: 6, = v (1 — vx) Uk — V&)
Propagate errors back through network, computing § at each unit

On = yn(1 — yp) Xk kWi n (Wg p, is weight from hidden h to output k)
8; = yi(1 — y;) Xn 6pwp; (wy; is weight from input i to hidden h)
Update network weights:

Wap = Wap + NYp0gq (Wqp is weight from unit b to unit a)



Avoiding overfitting in ANN

* Universal approximation property is appealing
— but is a double-edged sword
— easy to overfit training dataset

e Validation set approach

— Given labeled training dataset, D
Split D into disjoint portions D¢ygin» Dyatidater Peest
Train network iteratively on D¢,-4in, test periodically on D¢, gin
Stop when validation error increases consistently



Best Validation Performance is 0.073636 at epoch 5
0
107 ¢ :

— T rain
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Alternatives to error back-propagation

 EBP can be very slow to converge

— Gradient vanishes at local minima of error

* Many variations
— Adaptive learning rate
— Conjugate gradient methods



ANN hidden layer representations
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ANN hidden layer representations
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ANN hidden laver representations

Inputs Cutputs

Fa

Learned hidden laver representation:

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 97 27 — 00100000
00010000 — 99 97 71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 99 99 — 00000100
00000010 — .80 .01 98 — 00000010
00000001 — .60 .94 .01 — 00000001

Diagram: T. Mitchell
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Deep learning

* Recent work revisits multi-layer networks as
classifiers and as generative models

— Training uses Markov chain Monte Carlo ideas
— Hierarchical hidden representations develop
— See work by G. Hinton and others

digits generation

e and the talk by Prof. Baldi on Wed morning


http://www.cs.toronto.edu/~hinton/adi/index.htm

SUPPORT VECTOR MACHINES (SVM)



Making perceptrons more robust

* Many diff:
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SVM: optimization formulation

* Seek weight vector w that maximizes margin
among w that classify all examples correctly

max — subjecttoy'!(Wx + b) = 1 Vi

* Solution is a linear combination of the data
points x; at the margins (“support vectors”)

*
w _Eaiyixi

I



f(x)

6 July 2014

SVM: dual formulation

wix+b=0

e e

»
® ®
. o
Support Vector
@ : @® Support Vector o
¢ o i
. ® ¢
s o
E : T S °
— (lyd )#—b i °
z \ ' & .
support vectors A. Zisserman
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SVM: linearly non-separable case
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SVM: linearly non-separable case
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Recall solution by feature extraction

Let z = x? + y?
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Nonlinear SVM

Decision boundary in previous slide is linear in the
features f; = x? and f, = y*

It can therefore be found using a linear SVM in the
extended feature space (x,y, f1, f2)

Consider the mapping ®: (x,y) » (x,y,x%,y%)’

SVM solution only depends on the dot products
®(x;)'®(x;) of the training examples (Gram matrix)
— This can be shown using the dual optimization formulation



More general nonlinear boundaries

* Any conic section (parabola, hyperbola, ellipse) is
a level curve of a quadratic function in 2D

— a linear combination of the features 1, x,y, xy, x?, y2

* An SVM in this 6D space will be able to find a
guadratic decision boundary if one exists

* Higher-order boundaries addressed analogously

— Order n requires a feature space of dimension 0(n?)



Kernels

* High-D feature space computations are inefficient

e Shortcut possible using notion of kernel
Similarity function K (x, y) on the input space S such that:
K(x,y) is symmetric: K(x,y) = K(y,x) Vx,y
K(x,y) is continuous
K (x,y) is positive semi-definite:
D ciK(xi,xj)cj >0

for all finite point sequences x4, x5, ..., X, in S
and all real number sequences ¢4, ¢5, ..., ;.



Mercer’s theorem

(Mercer, 1908) Let K(x, y) be any continuous,
symmetric, positive semi-definite kernel on the

input space S.

There exists a mapping @: S — F, where F is a
(usually higher-dimensional) inner product space,
sothat K(x,y) =< ¢(x),p(y) >gforallx,yin§S.



The “kernel trick”

* Since the dual formulation of SVM only
depends on the Gram matrix ®(x;) ®(x;),
and since CD(xl-)’CD(xj) = K(x;, x;), the kernel
function suffices in order to solve for all

nonlinear decision boundaries that are linear
in the high-D feature space F.

* You don’t even have to explicitly know the
precise feature space or feature mapping



Popular kernel families

e Polynomial
K(x,y) = (1 +x-y)“

* Gaussian (radial basis function)

ix=ylI|°
K(x,y) =e 202

e String (Lodhi et al., 2002)



ACClLIrac\

Bias-variance tradeoff in SVM
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INSTANCE-BASED MACHINE
LEARNING



The data-driven viewpoint

* Why have models at all? Let data tell the story

* |nstance-based learning algorithm (“lazy learning”)
— Input: dataset D = {(x}, 1), ..., (x™, ™)}
— Output: predictive model M based on D

— Procedure:
return D

* |nstance-based prediction algorithm
— Input: unlabeled data instance, x
— Output: predicted label for x

— Procedure:
return label of most similar instances to x in D



Nearest-neighbor prediction

* Define similarity in terms of a distance metric
d(x,y) on the space of data instances

* For prediction on an instance, x
— Find the k nearest neighbors of x in training set D

— Classification: predict modal class among the
k nearest neighbors

— Regression: predict weighted mean of the target
values of k nearest neighbors
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How many neighbors, k?

e Simple analysis yields order of magnitude of optimal k

 Optimal k where bias and variance effects “cross”

Standard deviation of mean of k neighbors = 0(\/%)
Bias = O(diameter of k random points)

Qe

. k . . . k
e k points occupy 5 of total volume, so distance in unit cube = (ﬁ)
1 1

o e 1 _ (k\a. 148
Bias = stdev iff \/F_(N) i |k = Ntz

 For d=2, above predicts
k =+/N ,sok =10incase N = 100



Instance-based learning pros and cons

* Pros
— Training is not needed
— Does not rely on any parametric assumptions

* Cons
— Requires a lot of memory

— Prediction is computationally intensive due to
similarity search



PROBABILISTIC MACHINE
LEARNING



location

Randomness unpredictable (mostly)

Random event means occurrence unpredictable

%‘?(Wee&efoFar@ﬂacﬁmg?rséqqllém§, some structure “in the large”

Random walkers
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steps taken I
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Probabilistic classification

* Classes cq, Cy, ..., C} With “prior” probabilities P(c;)

* Attributes x4, x5, ..., X,;;; With joint class-conditional
distribution P(x{, X5, ..., X | ;)

* Given a data observation x4, X5, ..., X;,
what class should be predicted?



Maximum likelihood classification
* Predict class argmax; P(xq, X5, .., X | C;)

* Example
— P(positive lab result | sick) =0.9
— P(positive lab result | healthy) = 0.2
— Therefore, given a positive lab result as evidence,
predict that the patient is sick



Bayesian classification

* Bayes’ rule accounts for prior and class-conditional probs
— For hypotheses h and evidence e

P(h|e)=P(h)P(e|h)/P(e)

* Bayesian classifier
— Predict class argmax; P(c; | x1, %5, ..., X;m)

* Example
— P(sick =0.01), P(+ lab | sick) =0.9, P(+ lab | healthy) =0.2
— By Bayes’ rule,
— P(sick | +1ab) =0.01 0.9 /D, P(healthy | +lab)=0.990.2/D
— Therefore, given a positive lab result as evidence,
predict that the patient is healthy (about 20 times as likely)



Naive Bayes approach

e Bayesian approach often impractical

— Can’t estimate details of class-conditional distributions
e 10 ternary attributes allow 59000 combinations
* How to estimate these probabilities using 100 instances?

e Assume class-conditional independence (CCl)
P(xq1, X9, ., X | ¢;) = HP(xj|ci)
j

Predict class argmax; P(c;) |1; P(xj |cl-)

— Estimation of individual attribute values ]_[j P(xj|cl-) is feasible
* 10 ternary attributes only require 10(3) = 30 probabilities

* Naive Bayes can work well even if CCl assumption fails



Naive Bayes for text categorization

* Bag of words representation of document, d
— Define dictionary of allowed words, W

— Bernoulli version
* View d as vector d: W — {0,1} of word occurrences

— Multinomial version
* View d as vector d: W — Z* U {0} of word counts

* Use naive Bayes word independence assumption

P(d | class) = 1_[ P(d(w) | class)

wew



Naive Bayes for text categorization
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Naive Bayes Classifier
Neural Network
Support Vector Machine
Decision Tree

| | I | 1 |
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Wang et al, BMC Bioinformatics 8:269, 2007
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Bayesian networks
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Expectation-maximization
(Dempster, Laird, Rubin 1977, but basic idea is earlier)

* |terative general approach to estimation of
“hidden parameters” in probability models

— Including Bayesian networks

* Repeat to convergence or stopping condition
— E step

e Calculate expected value of generative log likelihood of data
given current model parameters

— M step

* Adjust parameter values to maximize expected log likelihood



Inference in Bayesian networks

* Exact inference is computationally complex

* Approximate inference techniques

— Markov chain Monte Carlo samples from
equilibrium distribution of Markov chain



Unsupervised clustering using E-M

 Model unlabeled data using mixture of known
parametric distributions, say Gaussians

— Hypothesize k populations, each described by different
parameter values (e.g., prior probability of that population,
and its mean and covariance)

* Use E-M to estimate parameters for given k

 Compare different k using DL ideas (combine
generative log likelihood with model complexity)

— Bayes Information Criterion (BIC)
— Akaike Information Criterion (AIC)



Example

e Mixture of Gaussians E-M clustering
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Probabilistic sequence models

* Model random effects over time or space
— Speech
— Sequence generation

e Use Bayesian networks, plus time slices

— The future is conditionally independent of the
past, given the present

e Typically include hidden variables



Hidden Markov models (HMM)

States X; at top not observable, only evidence e; at bottom

Russell and Norvig, Artificial Intelligence



HMM state estimation
(forward algorithm)

* Given evidence eq, €5, ..., €, €;, how to estimate of
actual final state X,?

 Seek conditional distribution P(X; | e; ¢)
Assume distribution P(X;_; | e; ;—1) known (att — 1)

* By Bayes'rule, P(X; |e; ) = cP(er ¢ |Xe)

=cP(e | X)) P(X¢ | Xe—q) XP(Xe—q | €g ¢—1)

which is a sum over the conditional distribution att — 1
(solved by recursion)



Example

* Berkeley PacMan
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HMM most likely state sequence
(Viterbi algorithm)

* Dynamic programming approach

state
space
paths

umbrella

most
likely
paths

Rain 1

A

<

m;,

Rar’nz

m;.,

Rain 3

m,;.;

Rain A

false

m .4

Russell and Norvig, Artificial Intelligence

Rar’n‘:;

false




Learning HMM parameters

* Use Expectation-Maximization

— Known as Baum-Welch algorithm in HMM context



TO LEARN MORE



Free machine learning software
(APIs and interactive)

* Python

— scikit-learn

— mlpy
— pyML

e Java

— Weka
— Apache Mahout

« C/C++

— SHOGUN (includes some of SVM-Light)
— mlpack

* R

— kernlab



Other machine learning resources

* ML on Coursera

— https://www.coursera.org/course/ml

ML course materials by Thorsten Joachims
— http://svmlight.joachims.org/



https://www.coursera.org/course/ml
http://svmlight.joachims.org/

Introductory ML references

Tom Mitchell. Machine Learning, McGraw-Hill, 1997

Christopher M. Bishop. Pattern Recognition and
Machine Learning, Springer, 2006

Richard Duda, Peter Hart and David Stork. Pattern
Classification, 2" ed., John Wiley & Sons, 2001

lan H. Witten, Eibe Frank, Mark A. Hall. Data Mining:
Practical Machine Learning Tools and Techniques, 3™
ed., Morgan Kaufmann, 2011

Stuart Russell and Peter Norvig. Artificial Intelligence:
a Modern Approach, 3™ ed., Prentice Hall, 2009



THANK YOU
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