
CS383, Alvarez

Prof. Sergio A. Alvarez http://www.cs.bc.edu/∼alvarez/
Fulton Hall 410–B alvarez@cs.bc.edu
Computer Science Department voice: (617) 552-4333
Boston College fax: (617) 552-6790
Chestnut Hill, MA 02467 USA

CS383, Algorithms
Notes on Divide and Conquer Recurrences

Divide and conquer algorithms will typically deal with an input instance of size n by dividing
it into a smaller instances, each of size approximately n/b, recursively construct a solution for each
of these smaller instances, and then combine these solutions to construct a solution for the original
instance. Letting T (n) denote the total running time of the algorithm for an input instance of
size n, and assuming that combination of solutions takes time c(n), this leads to the following
relationship satisfied by T :

T (n) = aT (n/b) + f(n) (1)

We discuss the solution of a class of recurrences of this form. Throughout, we assume that a base
case for the recursion is provided by specifying the running time for some instance size n0.

1 Series Expansion of the Basic Divide and Conquer Recurrence

Expanding the right-hand side of Eq. 1 by applying the equation a second time (for n/b instead of
n) yields the following version of the recurrence

T (n) = a(aT (n/b2) + f(n/b)) + f(n)

Iterating this process k times produces:

T (n) = akT (n/bk) +
k∑

j=0

ajf(n/bj)

Since recursion stops when n reaches some base level n = n0, the repeated expansion technique can
only be applied for k as long as n/bk ≥ n0, that is, k ≤ logb n/n0. For k0 = logb n/n0, we obtain:

T (n) = C0 +
k0∑

j=0

ajf(n/bj) (2)

where
C0 = ak0T (n0)



CS383, Alvarez

2 Solution of the Recurrence for Polynomial Combination Times

Explicit solution of Eq. 2 is possible only in certain cases. We will assume specifically that the
combination time f(n) grows at a polynomial rate:

f(n) = O(np)

Suppose concretely that a finite constant C exists such that:

f(n) ≤ Cnp for all n

Eq. 2 then becomes:

T (n) ≤ C0 + C

logb n/n0∑
j=0

aj(n/bj)p = C0 + Cnp

logb n/n0∑
j=0

(a/bp)j (3)

The summation on the right-hand side is a partial sum of a geometric series. Recall the formula
for such a geometric sum with a positive base, r:

m∑
j=0

rj =

{
rm+1−1

r−1 , if r 6= 1
m + 1, if r = 1

We are interested in the asymptotic behavior of such a sum for large values of m. Note that rm

grows exponentially with m if r > 1 and decays exponentially if r < 1. Therefore, we have:

m∑
j=0

rj =


O(rm), if r > 1
O(m), if r = 1
O(1), if r < 1

In the case of Eq. 3, the base r is a/bp and the upper summation limit m is logb n/n0. Asymptoti-
cally, logb n/n0 = logb n− logb n0 = O(logb n). Also,

(a/bp)logb n = alogb n/np = (blogb a)logb n = nlogb a/np

Hence, using the formula for the asymptotic behavior of a geometric sum, Eq. 3 yields:

T (n) =


O(nlogb a), if a > bp

O(np logb n), if a = bp

O(np), if a < bp

(4)

This result is equivalent to what the book calls the Master Theorem.



CS383, Alvarez

Algorithm 1: Divide and Conquer Multiplication
Input: Bit strings a[1...d] and b[1...d] that represent non-negative integers.
Output: The product a ∗ b of the corresponding integers.
recMult(a, b)
(1) if a and b occupy one machine word or less then return a ∗ b
(2) high(a) = a[1...bd/2c], high(b) = b[1...bd/2c]
(3) low(a) = a[bd/2c+ 1...d], low(b) = b[bd/2c+ 1...d]
(4) x = recMult(high(a), high(b))
(5) y = recMult(low(a), low(b))
(6) z = recMult(high(a)+low(a), high(b)+low(b))
(7) return 2dx + 2d/2(z − x− y) + y

2.1 Examples of Divide and Conquer Recurrence Analysis

1. Consider the divide and conquer approach to multiplication that we discussed in class, which
appears in Algorithm 1.

Let T (d) be the running time of recMult for d-digit inputs. The time required for extracting
high and low parts, adding, subtracting, and multiplying by powers of 2 (left shift) is O(d).
Since the number of recursive calls is 3, the recurrence relation for the running time is as
follows:

T (d) = 3T (d/2) + O(d)

We apply the Master Theorem discussed above, with a = 3, b = 2, p = 1. In this case,
a > bp, so the running time satisfies:

T (d) = O(dlog2 3)

2. Design a divide and conquer algorithm for finding the largest element of an unsorted array
of positive integers, and analyze its running time.

Algorithm 2: Divide and Conquer Maximum
Input: An array a[1...n] of strictly positive integers.
Output: The largest value among all elements of a.
dcMax(a)
(1) if a is empty then return 0
(2) if a has length 1 then return a[1]
(3) return max(dcMax(a[1...bn/2c]), dcMax(a[1 + bn/2c...n]))

We will assume that the integers stored in the input array fit into a single machine word.
The maximum of two such integers may be computed in time O(1). Hence, the recurrence
relation for the running time is:

T (n) = 2T (n/2) + O(1)

Applying the Master Theorem with a = 2, b = 2, p = 0 (note that a > bp), we find that the
running time satisfies T (n) = O(n). This is not surprising. After all, this particular divide
and conquer algorithm is just a recursive recast of an exhaustive search algorithm.


