
CSCI 3357: Database System Implementation

Homework Assignment 4

Due Thursday, October 5

Your task this week is to implement non-quiescent checkpointing. You will need to do
the following things:

1. Modify the interface LogRecord to have a constant NQCKPT with the value 6. You will
need to update the constant definitions and the method createLogRecord.

2. Create a new class NQCheckpoint to implement non-quiescent checkpoint records.
There are several issues.

a) First, determine what such checkpoint record should look like. It will contain an
integer denoting the constant NQCKPT, followed by an integer denoting the
number of active transactions, followed by the tx numbers of each active
transaction. For example, a NQCKPT log record having transactions 22 and 24
would look like this: < 6, 2, 22, 24>

b) Write the static method writeToLog, whose arguments are the LogMgr object
and the list of active transactions, constructs a page containing integers such as
above, and sends it to the log manager.

c) Write the constructor of the class and its methods. The constructor is called by
the LogRecord.createLogRecord method that you wrote in step 1. Its code
should do the opposite of the writeToLog method, extracting the values from
the page and saving them in the object’s variables. The code for the class will
need to contain the methods defined in the LogRecord interface. It will also need
to have a method txList that returns the list of active transactions from the log
record.

3. Modify the class RecoveryMgr in two ways:

a) Add a method checkpoint that simply writes a non-quiescent checkpoint record
to the log. This method will be called periodically from the Transaction class; its
argument will be a list of ids of the active transactions.

b) Modify the method doRecover to handle non-quiescent checkpoint records. This
is the most difficult part of the assignment; think carefully about what needs to
happen. As an aid to debugging, you should modify the method to print each log
record as it is encountered.

c) To help you out, your doRecover loop should look something like this. Note that
you need to cast the LogRecord object to the type NQCheckpoint:

while (…) {

 byte[] bytes = iter.next();

 LogRecord rec = LogRecord.createLogRecord(bytes);

	 if (rec.op()) == NQCKPT) {

	 NQCheckpoint nqrec = (NQCheckpoint) rec;

	 List<Integer> txlist = nqrec.txList();

	 …

}

4. Add a println statement in the undo methods of SetIntRecord and
SetStringRecord that prints “undoing record”. These statements will show you when
the recover and rollback methods actually undo a value, which will be a help
during debugging.

In addition, the Transaction constructor must be modified to keep track of the
currently-active transactions and to periodically call the recovery manager’s
checkpoint method. I have written this code for you, to ensure that everyone does
checkpointing at the same times (and thus has the same output). Download and use my
revised Transaction.java file.

To test your code, you can use my HW4TestA and HW4TestB programs. Download them
and add them to your simpledb.tx.recovery folder. Program HW4TestA performs
several transactions, periodically writing NQ checkpoint records, and stops before all
transactions have finished. Program HW4TestB preforms recovery on the log file.

When I run HW4TestA, I get the following output:

new transaction: 1

new transaction: 2

transaction 2 setint old=0 new=10002

transaction 2 committed

new transaction: 3

transaction 3 setint old=0 new=10003

new transaction: 4

transaction 4 setint old=0 new=10004

NQ CHECKPOINT: Transactions 1 3 4 are still active

new transaction: 5

transaction 5 setint old=0 new=10005

transaction 3 committed

transaction 5 committed

new transaction: 6

transaction 6 setint old=0 new=10006

new transaction: 7

transaction 7 setint old=0 new=10007

new transaction: 8

transaction 8 setint old=0 new=10008

transaction 4 committed

transaction 7 committed

new transaction: 9

transaction 9 setint old=0 new=10009

NQ CHECKPOINT: Transactions 1 6 8 9 are still active

new transaction: 10

transaction 10 setint old=0 new=100010

new transaction: 11

transaction 11 setint old=0 new=100011

transaction 6 committed

transaction 9 committed

transaction 11 committed

new transaction: 12

transaction 12 setint old=0 new=100012

new transaction: 13

transaction 13 setint old=0 new=100013

new transaction: 14

transaction 14 setint old=0 new=100014

transaction 8 committed

transaction 12 committed

transaction 14 committed

NQ CHECKPOINT: Transactions 1 10 13 are still active

new transaction: 15

transaction 15 setint old=0 new=100015

new transaction: 16

transaction 16 setint old=0 new=100016

new transaction: 17

transaction 17 setint old=0 new=100017

transaction 10 committed

transaction 15 committed

transaction 17 committed

transaction 1 committed

Running HW4TestB gives the following output:

new transaction: 1

Initiating Recovery

Here are the visited log records

<START 1>

<COMMIT 1>

<COMMIT 17>

<COMMIT 15>

<COMMIT 10>

<SETINT 17 [file testfile, block 15] 99 0>

<START 17>

<SETINT 16 [file testfile, block 14] 99 0>

	 undoing record

<START 16>

<SETINT 15 [file testfile, block 13] 99 0>

<NQCKPT 1 10 13 >

<START 15>

<COMMIT 14>

<COMMIT 12>

<COMMIT 8>

<SETINT 14 [file testfile, block 12] 99 0>

<START 14>

<SETINT 13 [file testfile, block 11] 99 0>

	 undoing record

<START 13>

The first log record visited, <START 1>, is the first (and only) log record for the
transaction corresponding to the HW4TestB program. The second log record visited,
<COMMIT 1>, is the last log record for HW4TestA, and corresponds to its initial
transaction. These transaction numbers repeat because SimpleDB starts transaction
numbers from 1 each time it begins. That is kind of annoying, but not worth changing.

The last two values in the SETINT records are 99 and 0. The 99 denotes an offset of the
block, and the 0 denotes that the previous value at that offset is 0.

Note that only the updates for transactions 13 and 16 get undone. The recovery method
uses the NQCHECKPOINT record to know that it can stop after seeing the START record
for transaction 13.

Before you write any code, make sure that you understand this output! You
can’t write code to do something you don’t understand.

This test file gives you the flavor of how you can test your code. You probably should
begin with a stripped down version of it, and increase complexity as you work out the
bugs. Another debugging aid is the program PrintLogFile, which is in the recovery
directory. After running HW4TestA, run PrintLogFile to ensure that the log records are
what you expect. (You will need to modify PrintLogFile so that it uses the database
named “txtest” instead of “studentdb”.)

Once you get your code working, you might have fun doing the following: Run several
JDBC programs that make (non-conflicting) changes to the database, modified so that
some of them sleep before committing. When all are running, stop the server. Then
bring up the server again, and see what gets printed during recovery.

WARNING: This assignment is substantially harder than previous ones. It's not that you
need to write a lot of code. It's that you will need to think hard to figure out what code
you need to write and where it should go. That’s why I’m giving you extra time. You’ll
need it. Start early.

 
When you are done, zip the five files LogRecord.java, NQCheckpointRecord.java,
RecoveryMgr.java, SetIntRecord.java, and SetStringRecord.java and submit the zipped
file to Canvas. As in previous assignments, please write your code exactly as described.
Otherwise it becomes very difficult for me to grade your assignment.

 

