
CSCI 3357: Database System Implementation

Homework Assignment 9

Due Thursday, November 16

Note: This assignment requires a correct solution to HW 6. If you have any doubts,
download and use my solution.

1. In HW 6 you modified the record manager to handle null values. Your first task is to
modify the class Constant to implement a “null constant”. In particular:

• Add a constructor to the class to create the null constant. Let’s assume that a null

constant has null values for both ival and sval. Then this constructor is trivial — it
has no argument and have it do nothing (since ival and sval are null by default).

• Add the method isNull() to class Constant that returns true if the object is a null
constant and false otherwise.

• Modify the methods equals, compareTo, hashCode, and toString. A null
constant will never compare successfully with another object (even another null
constant!). That is, if you have a null constant, calling the equals method should
always return false, calling the compareTo method should return -1, calling
hashCode should return 0, and calling toString should return “null”.

2. Modify the TableScan class so that the method getVal will return a null constant if
the value of the requested field is null, and the method setVal will set the requested
field value to null if its argument is a null constant.

3. The next task is to modify the class Term. Currently, a term must be of the form
"e1=e2" for expressions e1 and e2. You need to generalize terms so that they can also
be of the form "e1<e2", "e1>e2" and "e1 IS null". In this last term, the operator is the
keyword “IS”.

This class has a lot of methods, many of which are uninteresting to us. I have made
appropriate modifications to those methods in the file Term.java, and you should
download this file before you begin.

My version defines a variable op that holds the term’s operation. Its value is one of the
following four defined constants:

public static final int EQ=0, LT=1, GT=2, IS=3;

My class also defines a new constructor that has three arguments — the left-hand
expression, an int denoting the operator, and the right-hand expression. The existing
two-argument constructor has been modified to use the operator EQ.

Your job is to modify the methods isSatisfied and toString.

The isSatisfied method is where a term gets evaluated. Modify it so it does the
appropriate comparison as specified by the operator. The IS operator should return true
if its left-side expression evaluates to a null constant. Make sure that the other operators
work correctly in the presence of null constants. Note that comparing a null constant to
any other constant is always false, even if the other constant is also null.

The toString method constructs a representation of the term in SQL syntax, such as

"A > 3", "B is null", etc.

4. Your final task is to modify the lexer and parser to handle the added functionality.
Modify the lexer to have the additional keywords “null” and “is”. Modify the parser based
on the following modifications to the SimpleDB grammar:

<Constant> := StrTok | IntTok | <NullConstant>

<NullConstant> := NULL // i.e., the keyword "null"

<Term> := <Expression> <Op> <Expression>

<Op> := < | > | = | IS

Although the grammar doesn’t mention it, the parser should enforce the constraint that if
the operator is “IS”, then its right-hand-side expression must be comprised of a
<NullConstant> constant.

You should download my test program HW9Test.java, to help you test your final code.
In the early stages of debugging, I recommend that you simplify it.

One of the great things about changing the parser is that you have actually changed the
language and can see the changes via JDBC. In particular, look at my JDBC client
program named HW9Client.java. It runs in embedded mode. Try it. It performs the
following actions, none of which were possible prior to this assignment.

• It uses an update command to set the GradYear value for the STUDENT record
"amy" to be null;

• It inserts a new STUDENT record for "tom", whose MajorId value is 20 and
whose GradYear value is null;

• It issues a query to print the names of all students graduating after 2019 and
before 2022; and

• It issues a query to print the names of all students having a null grad year.

When you are done, create a zip file containing the files Constant.java, Term.java,
TableScan.java, Lexer.java, and Parser.java. Then submit your zip file to Canvas.

