
CSCI 3357: Database System Implementation

Homework Assignment 3

Due Thursday, September 21

The SimpleDB buffer manager is grossly inefficient in two ways:

• When looking for a buffer to replace, it uses the first unpinned buffer it finds, instead

of doing something intelligent like LRU.

• When checking to see if a block is already in a buffer, it does a sequential scan of

the buffers, instead of keeping a data structure (such as a map) to more quickly
locate the buffer.

I would like you to fix these problems by modifying the class BufferMgr. Please use
the following strategy:

a) Keep a list of the unpinned buffers, called unpinned. When a replacement buffer

needs to be chosen, remove the buffer at the head of the list and use it. When a
buffer's pin count becomes 0, add it to the end of the list. This implements LRU
replacement.

b) Keep a map, called inMemory, whose entries describe the blocks that are currently
stored in buffers. The key of each map entry is a BlockId, and its value is the
Buffer object holding that block. The map is initially empty. When you need to know
if a block is currently in a buffer, you simply look it up in the map. If you want to read
a block into a chosen buffer, you add an entry to the map. If the chosen buffer
already contains a block, then you must also remove the entry for that block. Recall
that each Buffer object has a method block(), which tells you the block (if any)
that is in that buffer.

c) Get rid of the bufferpool array. You no longer need it. You also won’t need the
available variable, because you can determined the number of available buffers
by looking at the unpinned list.

I have written a test program called HW3Test that I will use to grade your code. You
should download it to help with debugging. This program pins and unpins buffers,
occasionally calling the buffer manager’s printStatus method to display its status.
The status consists of the id, block, and pinned status of each buffer in the inMemory
map, plus the ids of each buffer in unpinned list. For example, here is what the output
of the method should look like for a database having 4 buffers, in which blocks 0 to 3 of
file “test” were pinned, and then blocks 2 and 0 were unpinned.

Buffers and their Contents:

 Buffer 1: [file test, block 1] pinned

 Buffer 0: [file test, block 0] unpinned

 Buffer 3: [file test, block 3] pinned

 Buffer 2: [file test, block 2] unpinned

Unpinned Buffers in LRU order: 2 0

Currently, the buffer manager doesn’t have a printStatus method. You will need to
write it. As shown above, each buffer has an id number to identify it. Your code for this
method should ask each buffer for its id number. I modified the class Buffer to help
you out. In particular, its constructor now has a third argument denoting the buffer's id,
and there is a method getId() that returns its id. You should download and use this
revised Buffer class. Of course, you will also have to modify the BufferMgr
constructor so that its call to the Buffer constructor has three arguments: the file
manager, the log manager, and the buffer’s id number.

The allocated buffers are printed in seemingly random order because they were
retrieved from a hash map; that’s ok. The block information within brackets comes from
calling the toString method of BlockId.

The make sure that your code works, you should compare its output on HW3Test with
the output you expect to get. Make sure that you are clear about what the expected
output should be! The sequence of operations in this test program contains a tricky
special case that you may not have handled.

 
Submit to Canvas your revised code for BufferMgr.java. As before, do not change its
package. Also, please do not change any other classes in SimpleDB. I need to be able
to grade your file by simply adding it to my SimpleDB environment.

Although you won’t need to write much code, I strongly suggest that you start early. This
assignment requires a thorough understanding of LRU buffer management and the
SimpleDB buffer management classes. You may find yourself getting very lost. If so,
please see me early or ask questions in class. 

